

ENR811 – Énergies renouvelables

14. Energie biologique

14.4 La combustion

Anthony Goncalves, M.Sc.

Président, Nexx Énergie

Daniel R. Rousse, ing., Ph.D.

Groupe t3e, Département de génie mécanique

François Relotius, M.ing.

- Introduction et objectifs de la capsule
- Tétraèdre du feu
- Types de combustion
- Chimie de la combustion
- Energie dégagée et pouvoir calorifique
- Applications
- Conclusion

- Introduction et objectifs de la capsule
- Tétraèdre du feu
- Types de combustion
- Chimie de la combustion
- Energie dégagée et pouvoir calorifique
- Applications
- Conclusion

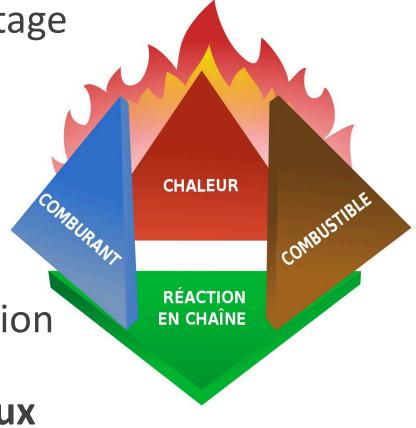
Flux de copeaux de bois à travers le monde.

https://www.futuremetrics.info/global-trade-sankey-map/

Introduction et objectifs

- La combustion sert à une multitude d'applications
 - cuire la nourriture, chauffer les résidences, produire de l'électricité ou encore faire rouler les voitures.
- Aujourd'hui encore, l'utilisation de biomasse occupe une large partie dans la consommation finale totale mondiale.
 - Environ 10 % dans le rapport « Key world energy statistics » de l'Agence Internationale de l'Energie IEA.
- Et une majeure partie de cette biomasse, traditionnelle ou moderne, est utilisée dans des procédés de combustion.

Introduction et objectifs


- Objectifs de cette présentation
 - Comprendre les mécanismes de la combustion;
 - Effectuer un rappel de la réaction à un niveau moléculaire;
 - Énumérer quelques applications liées à la combustion;
 - Comprendre l'intérêt de cette source d'énergie mais aussi les enjeux associés à l'utilisation de ce procédé à grande échelle.

- Introduction et objectifs de la capsule
- Tétraèdre du feu
- Types de combustion
- Chimie de la combustion
- Energie dégagée et pouvoir calorifique
- Applications
- Conclusion

• Avant les années 1980, on discutait davantage du **triangle du feu** constitué de :

- Un combustible
- Un comburant
- Une énergie d'activation

• Lorsque l'on parle aujourd'hui de combustion avec flammes, on ajoute un quatrième élément : la réaction chimique (les radicaux libres).

- Combustible : constitue l'élément qui alimente le feu.
 - solides (bois, tissu, papier, etc.),
 - liquides (essence, huile, fioul, etc.)
 - et gazeux (butane, méthane, propane, etc.)

- Comburant : il s'agit, la plupart du temps, du **dioxygène** qui constitue une partie de l'air ambiant.
 - Si l'on prive un feu d'air, il s'éteint.
 - Si le mouvement de l'air imputable à la convection s'accentue, le feu augmente car le comburant est davantage disponible.

- Activateur : la réaction débute par une énergie d'activation qui est, la plupart du temps, de la chaleur ou une flamme.
 - Il faut franchir un seuil d'énergie pour que la réaction démarre.
- Radicaux libres : ils sont créés par la rupture des liaisons chimiques due à l'énergie thermique.
 - Ces derniers agissent sur les molécules du combustible, libérant d'autres radicaux, ce qui engendre une réaction en chaîne qui perdure tant qu'il y a du combustible et du comburant;
 - Ces radicaux se recombinent ensuite pour former les produits de combustion, bien sûr différents du combustible et du comburant.

• Les biocarburants solides

- Introduction et objectifs de la capsule
- Tétraèdre du feu
- Types de combustion
- Chimie de la combustion
- Energie dégagée et pouvoir calorifique
- Applications
- Conclusion

Types de combustion

• Combustion rapide : de grandes quantités de chaleur et d'énergie sont relâchées ce qui donne naissance au **feu**.

 Combustion lente : sans flamme et à basse température, entretenue par la chaleur dégagée lorsque l'oxygène attaque la surface d'un combustible. C'est un phénomène de surface plutôt qu'un changement au sein de la phase gazeuse.

Types de combustion

 Combustion complète : le réactif réagit avec le comburant jusqu'à former des produits qui ne peuvent plus être oxydés (qui ne peuvent plus réagir avec le comburant).

Elle permet d'obtenir la quantité maximale d'énergie disponible par une substance : c'est le **pouvoir calorifique**.

Types de combustion

- Combustion incomplète : s'il n'y a pas assez de comburant pour la réaction complète du combustible ou que le temps de contact à une température assez élevée est trop court.
 - Il y a alors des **résidus** qui peuvent contenir des fumées toxiques.

- Une réaction de combustion est habituellement incomplète.
 - sauf si l'on contrôle les conditions qui permettent de la rendre complète (ex : apport d'un excès de dioxygène à haute température).

Question

Dans le cas où un hydrocarbure réagit idéalement avec du dioxygène, quels seraient les produits d'une combustion complète ?

Réponse : Du dioxyde de carbone et de l'eau

 $CO_2 \& H_2O$

- Introduction et objectifs de la capsule
- Tétraèdre du feu
- Types de combustion
- Chimie de la combustion
- Energie dégagée et pouvoir calorifique
- Applications
- Conclusion

 Comme toute réaction chimique, la combustion se fait sans variation de masse des éléments.

• Pour un hydrocarbure composé uniquement de carbone et d'hydrogène de formule $C_x H_y$, la réaction idéale s'écrit :

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \to x C O_2 + \frac{y}{2} H_2 O$$

• Les produits indésirables d'une oxydation incomplète sont alors CO et C_xH_y .

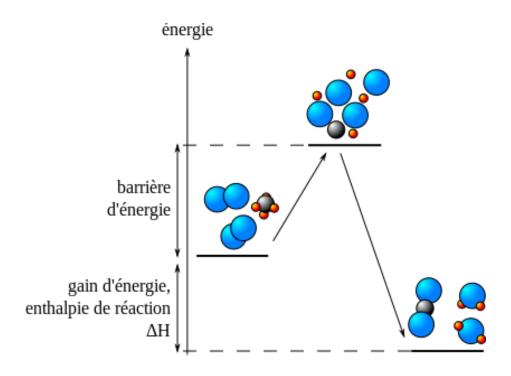
• La plupart du temps, le comburant est l'air. Si l'on considère que l'air est composé de 21% de dioxygène et de 79% d'azote, la réaction idéale devient :

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 + \frac{79}{21} \left(x + \frac{y}{4}\right) N_2 \to x C O_2 + \frac{y}{2} H_2 O + \frac{79}{21} \left(x + \frac{y}{4}\right) N_2$$

- L'air théorique est la quantité minimale d'air pour réalisé une combustion complète.
- Pour cela, il faut une quantité optimale ET un mélange parfait.
- En pratique, on ajoute un certain excès d'air caractérisé par le coefficient d'air théorique :

$$\lambda = \frac{air \ utilis\acute{e}}{air \ th\acute{e}orique}$$

• L'excès peut aussi être caractérisé par le coefficient d'excès d'air, soit $E=\lambda-1$


• L'équation de combustion complète devient alors :

$$C_x H_y + \lambda \left(x + \frac{y}{4}\right) O_2 + \lambda \frac{79}{21} \left(x + \frac{y}{4}\right) N_2 \rightarrow x C O_2 + \frac{y}{2} H_2 O + E \left(x + \frac{y}{4}\right) O_2 + \lambda \frac{79}{21} \left(x + \frac{y}{4}\right) N_2$$

• Cette équation de combustion simple est assez rarement rencontrée dans la nature. D'autres produits sont formés.

- Introduction et objectifs de la capsule
- Tétraèdre du feu
- Types de combustion
- Chimie de la combustion
- Energie dégagée et pouvoir calorifique
- Applications
- Conclusion

• Lors de la combustion, la quantité d'énergie produite est appelée enthalpie. Elle est exprimée en joules (J).

La quantité d'énergie dégagée par la réaction est **supérieure** à la quantité d'énergie nécessaire à l'amorcer.

 Le pouvoir calorifique est l'énergie obtenue par la combustion d'un kilogramme de combustible. Il est exprimé à la base en joules par kilogramme (J/kg)

- On distingue deux pouvoirs calorifiques :
 - Le pouvoir calorifique supérieur (PCS, également appelé pouvoir calorifique brut ou énergie brute ou HHV, higher heat value)
 - Le pouvoir calorifique inférieur (PCI, également appelé pouvoir calorifique net ou LHV, lower heat value)

- Le pouvoir calorifique inférieur (PCI) d'un combustible est défini comme la quantité de chaleur libérée en brûlant une quantité spécifiée (initialement à 25° C) et en ramenant la température des produits de combustion à 150° C, ce qui suppose la chaleur latente de vaporisation de l'eau dans la réaction n'est pas récupérée.
- Les PCI sont les valeurs calorifiques utiles dans les installations de combustion de chaudières et sont fréquemment utilisé en Europe.
- Le PCI n'inclut donc pas la condensation de la vapeur d'eau contenue dans les fumées.

- Le pouvoir calorifique supérieur (PCS) d'un combustible est défini comme la quantité de chaleur dégagée par une quantité spécifiée (initialement à 25° C) une fois qu'elle est brûlée et que les produits sont revenus à une température de 25° C, ce qui tient compte de la chaleur latente de vaporisation de l'eau dans les produits de combustion.
- Les PCS sont obtenus uniquement en laboratoire et sont fréquemment utilisés aux États-Unis pour les combustibles solides.
- Le PCS est ainis toujours supérieur au PCI. Les deux s'expriment en MJ/kg ou parfois en kWh/kg dans les applications de production d'électricité. Ou en Btu/lb voire en Btu/ft³.

Lower and Higher Heating Values of Gas, Liquid and Solid Fuels

Fuels	Lower Heating Value (LHV) [1]		Higher He	Higher Heating Value (HHV) [1]			
Gaseous Fuels @ 32 F and 1 atm	Btu/ft3 [2]	Btu/lb [3]	MJ/kg [4]	Btu/ft3 [2]	Btu/lb [3]	MJ/kg [4]	grams/ft3
Natural gas	983	20,267	47.141	1089	22,453	52.225	22.0
Hydrogen	290	51,682	120.21	343	61,127	142.18	2.55
Still gas (in refineries)	1458	20,163	46.898	1,584	21,905	50.951	32.8
Liquid Fuels	Btu/gal [2]	Btu/lb [3]	MJ/kg [4]	Btu/gal [2]	Btu/lb [3]	MJ/kg [4]	grams/gal
Crude oil	129,670	18,352	42.686	138,350	19,580	45.543	3,205
Conventional gasoline	116,090	18,679	43.448	124,340	20,007	46.536	2,819
Reformulated or low-sulfur gasoline	113,602	18,211	42.358	121,848	19,533	45.433	2,830
CA reformulated gasoline	113,927	18,272	42.500	122,174	19,595	45.577	2,828
U.S. conventional diesel	128,450	18,397	42.791	137,380	19,676	45.766	3,167
Low-sulfur diesel	129,488	18,320	42.612	138,490	19,594	45.575	3,206
Petroleum naphtha	116,920	19,320	44.938	125,080	20,669	48.075	2,745
NG-based FT naphtha	111,520	19,081	44.383	119,740	20,488	47.654	2,651
Residual oil	140,353	16,968	39.466	150,110	18,147	42.210	3,752
Methanol	57,250	8,639	20.094	65,200	9,838	22.884	3,006
Ethanol	76,330	11,587	26.952	84,530	12,832	29.847	2,988
Butanol	99,837	14,775	34.366	108,458	16,051	37.334	3,065
Acetone	83,127	12,721	29.589	89,511	13,698	31.862	2,964
E-Diesel Additives	116,090	18,679	43.448	124,340	20,007	46.536	2,819
Liquefied petroleum gas (LPG)	84,950	20,038	46.607	91,410	21,561	50.152	1,923
Liquefied natural gas (LNG)	74,720	20,908	48.632	84,820	23,734	55.206	1,621
Dimethyl ether (DME)	68,930	12,417	28.882	75,610	13,620	31.681	2,518
Dimethoxy methane (DMM)	72,200	10,061	23.402	79,197	11,036	25.670	3,255
Methyl ester (biodiesel, BD)	119,550	16,134	37.528	127,960	17,269	40.168	3,361
Fischer-Tropsch diesel (FTD)	123,670	18,593	43.247	130,030	19,549	45.471	3,017
Renewable Diesel I (SuperCetane)	117,059	18,729	43.563	125,294	20,047	46.628	2,835
Renewable Diesel II (UOP-HDO)	122,887	18,908	43.979	130,817	20,128	46.817	2,948
Renewable Gasoline	115,983	18,590	43.239	124,230	19,911	46.314	2,830

Lower and Higher Heating Values of Gas, Liquid and Solid Fuels

Fuels	Lower Heating Value (LHV) [1]			Higher Heating Value (HHV) [1]			Density
Liquid Fuels	Btu/gal [2]	Btu/lb [3]	MJ/kg [4]	Btu/gal [2]	Btu/lb [3]	MJ/kg [4]	grams/gal
Liquid Hydrogen	30,500	51,621	120.07	36,020	60,964	141.80	268
Methyl tertiary butyl ether (MTBE)	93,540	15,094	35.108	101,130	16,319	37.957	2,811
Ethyl tertiary butyl ether (ETBE)	96,720	15,613	36.315	104,530	16,873	39.247	2,810
Tertiary amyl methyl ether (TAME)	100,480	15,646	36.392	108,570	16,906	39.322	2,913
Butane	94,970	19,466	45.277	103,220	21,157	49.210	2,213
Isobutane	90,060	19,287	44.862	98,560	21,108	49.096	2,118
Isobutylene	95,720	19,271	44.824	103,010	20,739	48.238	2,253
Propane	84,250	19,904	46.296	91,420	21,597	50.235	1,920
Solid Fuels	Btu/ton [2]	Btu/lb [5]	MJ/kg [4]	Btu/ton [2]	Btu/lb [5]	MJ/kg [4]	
Coal (wet basis) [6]	19,546,300	9,773	22.732	20,608,570	10,304	23.968	
Bituminous coal (wet basis) [7]	22,460,600	11,230	26.122	23,445,900	11,723	27.267	
Coking coal (wet basis)	24,600,497	12,300	28.610	25,679,670	12,840	29.865	
Farmed trees (dry basis)	16,811,000	8,406	19.551	17,703,170	8,852	20.589	
Herbaceous biomass (dry basis)	14,797,555	7,399	17.209	15,582,870	7,791	18.123	
Corn stover (dry basis)	14,075,990	7,038	16.370	14,974,460	7,487	17.415	
Forest residue (dry basis)	13,243,490	6,622	15.402	14,164,160	7,082	16.473	
Sugar cane bagasse	12,947,318	6,474	15.058	14,062,678	7,031	16.355	
Petroleum coke	25,370,000	12,685	29.505	26,920,000	13,460	31.308	

Source:

GREET Transportation Fuel Cycle Analysis Model, GREET 1.8b, developed by Argonne National Laboratory, Argonne, IL, released May 8, 2008.

http://www.transportation.anl.gov/software/GREET/index.html

Fueltype	LHV _{DM} (MJ/kg)	HHV _{DM} (MJ/kg)
Spruce wood (with bark)	18,8	20,2
Beech wood (with bark)	18,4	19,7
Poplar wood (SRC)	18,5	19,8
Willow wood (SRC)	18,4	19,7
Bark (coniferous trees)	19,2	20,4
Rye straw	17,4	18,5
Wheat straw	17,2	18,5
Triticale straw	17,1	18,3
Barley straw	17,5	18,5
Rape straw	17,1	18,1
Wheat (whole crop)	17,1	18,7
Triticale (whole crop)	17,0	18,4
Wheat grain	17,0	18,4
Triticale grain	16,9	18,2
(Rape seed)	26,5	k. A.
Miscanthus	17,6	19,1
Hay (Landscape)	17,4	18,9
Rye grass	16,5	18,0
For comparison:		
Hard coal (stone coal)	29,7	k. A.
Brown coal (Lignite)	20,6	k. A.

Moistu	ıre (%)	High	er heatin	g value o	f dry bio	mass (HH)	/d)
Wet basis	Dry basis	22 GJ	20 GJ	18 GJ	22 GJ	20 GJ	18 GJ
Higher (HHV) and lower (LHV) heating values of biomass at given moisture content					of		
w	u	HHVw	HHVw	HHVw	LHVw	LHVw	LHVw
0	0	22.0	20.0	18.0	20.79	(18.79)	16.79
5	5	20.9	19.0	17.1	19.64	17.74	15.84
10	11	19.8	18.0	16.2	18.49	16.69	14.89
15	18	18.7	17.0	15.3	17.34	15.64	13.94
20	25	17.6	16.0	14.4	16.18	14.58	12.98
25	33	16.5	15.0	13.5	15.03	13.53	12.03
30	43	15.4	14.0	12.6	13.88	12.48	11.08
35	54	14.3	13.0	11.7	12.72	11.42	10.12
40	67	13.2	12.0	10.8	11.57	10.37	9.17
45	82	12.1	11.0	9.90	10.42	9.32	8.22
50	100	11.0	10.0	9.90	9.27	8.27	7.27
	1	Indices	s: d = DM a	nd w = FM	Sour	ce: Kartha et a	al. (2005)

- Introduction et objectifs de la capsule
- Tétraèdre du feu
- Types de combustion
- Chimie de la combustion
- Energie dégagée et pouvoir calorifique
- Applications
- Conclusion

Transport

 Réaction dans les moteurs à explosion, outils mobiles (tondeuses) et installations fixes (groupes électrogènes et pompes).

Bâtiment

- Cuisson des aliments en utilisant directement la flamme ou par rayonnement (braises, parois du four)
- Chauffage (poêle à combustion, feu de cheminée, etc.)
- Production d'ECS
- Éclairage (bougies, lampes)

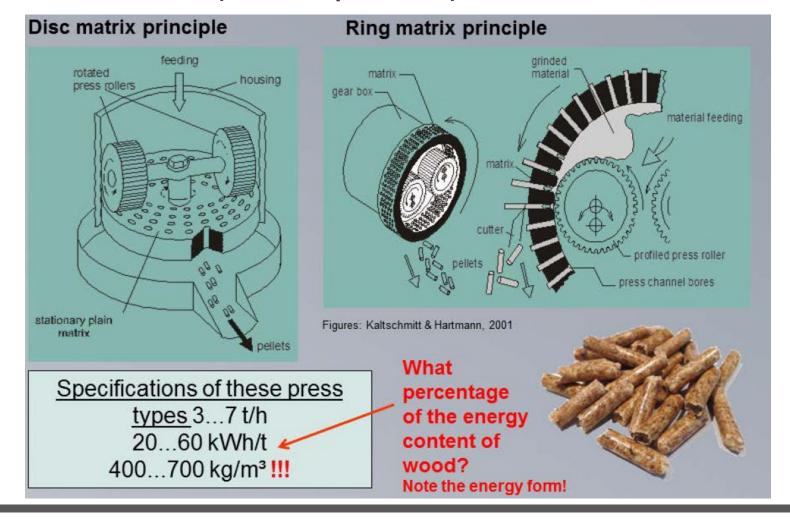
Électricité

 Dans les centrales thermiques en utilisant des combustibles fossiles ou renouvelables comme des déchets agricoles et de la biomasse ou encore des déchets (incinérateurs).

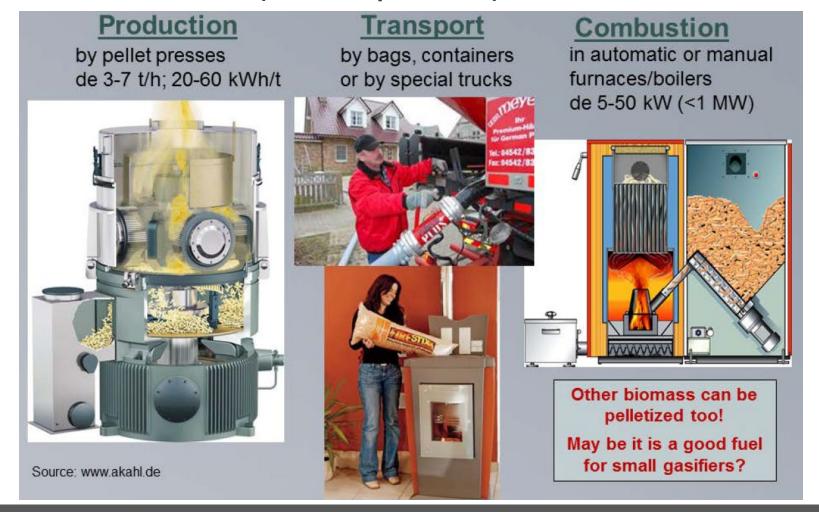
Industrie

 Certains minerais sont transformés en métaux par réaction avec un gaz issu de la combustion (pyrométallurgie).

• Il existe un grand nombre d'autres applications.


• Parmi les autres produits de combustion:

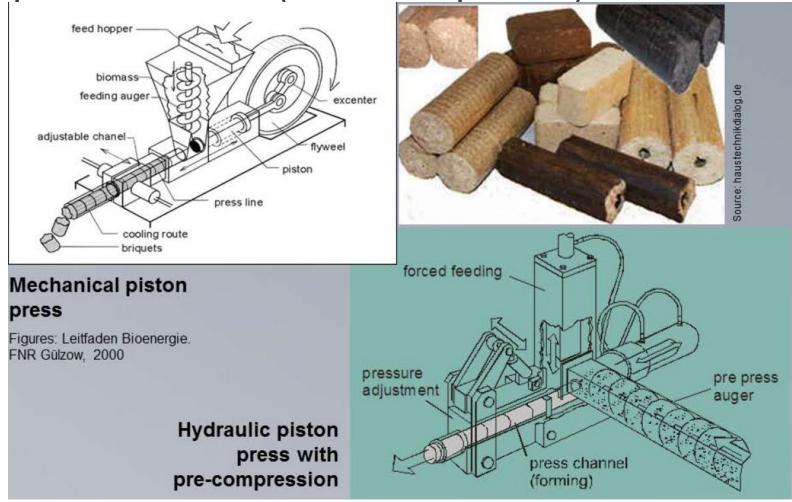
Gaz	Raisons	Impacts sur l'humain et l'environnement		
Monoxyde de carbone (<i>CO</i>)	Combustion incomplète due à un manque d'air, une température trop	Gaz extrêmement toxique sans couleur, sans odeur ni goût.		
Hydrocarbures $(C_x H_y)$	faible, une combustion trop courte, des cycles de chargement trop nombreux	Certains sont des gaz à effet de serre comme CH_4 , le CHC , le PCB , le PAH , etc.		
Oxyde de nitrogène (NO_x)	Oxydation du nitrogène de l'atmosphère et du carburant	Maladies respiratoires, trous dans la couche d'ozone et smog		
Protoxyde d'azote (N_2O)	Grosse quantité de N, poussières, coefficient λ élevé, etc.	Epuisement de l'ozone et effet de serre		


• Parmi les autres produits de combustion:

Gaz	Raisons	Impacts sur l'humain et l'environnement
Dioxyde de souffre (SO_2)	Pas de pertinence avec la biomasse	Sans couleur, donne la nausée quand respiré, acidification de l'air et des sols
Acide salin (<i>HCl</i>), dioxine et furane	Chlore et fluor du carburant	Gaz toxiques qui causent des cancers, acidification et de la corrosion dans les chaudières
Suie et cendres volatiles	Pourcentage élevé de carburant dans les cendres, combustion incomplète, vents, problèmes mécaniques dans les chaudières, etc.	Maladies respiratoires et problèmes environnementaux

Les granulés de bois (wood pellets)

• Les granulés de bois (wood pellets)


Applications

Les copeaux de bois (wood chips)

Type Cutting tool	Feeding type	Diameter of trunk	Chip length	Power (kW)	Output (m³/h)
Disc wheel chipper 1-4 blades	without or self-feeding or 1-3 rolls	0 - 300 mm	4 - 80 mm	8 - 105	2 - 60
Trommel chipper 2-8 compact blades or 3-20 single blades	2 rolls or 2 steel conveyor belts	180 - 450 mm	5 - 80 mm	45 - 325	15 - 100
Screw chipper Helical vane inserts	self-feeding	160 - 270 mm	20 - 80 mm	30 - 130	5 - 40
	Sou	urce: Hartmann, H. et al	: Handbuch Bioe	energie-Kleinanlage	n. FNR Gülzow, 20

Applications

Les briquettes de bois (wood briquettes)

- Qu'est-ce que la siccité de la biomasse?
 - % massique de matière sèche, inverse de l'humidité;
 - Dans un tonne de biomasse à siccité de 80% il y a 200 kg d'eau et 800 kg de biomasse sèche;
 - Une siccité supérieure à 70% est considérée très bonne pour des applications de combustion. Ex : il faut souvent faire sécher le bois avant de l'employer pour dégager une énergie nette suffisante;
 - Une siccité de 50% en combustion implique du bois mouillé voire moisi. Employé en lits fluidisés pour favoriser l'évaporation de l'eau, le bois est d'abord broyé pour augmenter le rapport surface/volume.

• Combien d'énergie peut-on extraire d'une tonne de biomasse à 40% de siccité et à 20° C si le rendement de combustion est de $\epsilon = 75\%$?

- L'énergie sera employée pour:
 - 1. Amener l'eau contenue dans le bois de la température ambiante à 100°C;
 - 2. Évaporer cette eau;
 - 3. Créer de la vapeur d'eau par combustion qui pourrait être condensée et récupérée mais qui souvent ne l'est pas;
 - 4. Produire une énergie utile pouvant être en partie employée pour produire de la vapeur et de l'électricité et produire de la chaleur.

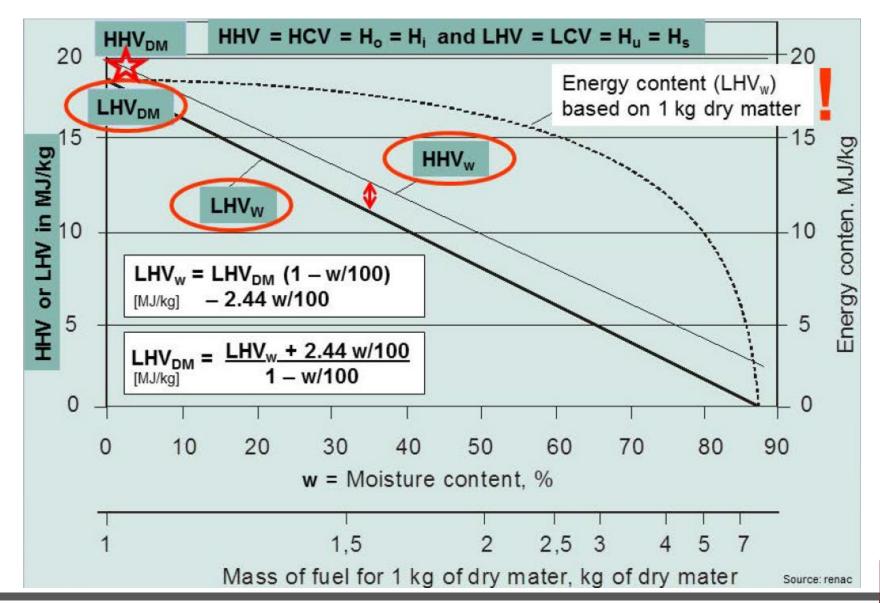
- Combien d'énergie peut-on extraire d'une tonne de biomasse à 40% de siccité et à 20° C si le rendement de combustion est de $\epsilon = 75\%$?
 - Il y a d'abord 600 kg d'eau à chauffer. Il faut chauffer l'eau contenue dans le bois de 20°C à 100°C.
 - La chaleur spécifique de l'eau est de c_p = 4,2kJ/kgK (environ)
 - $-E_{perte\ chauf\ eau} = m_{eau}c_p(100^oC 20^oC)$ = 201 600 kJ

- Combien d'énergie peut-on extraire d'une tonne de biomasse à 40% de siccité et à 20° C si le rendement de combustion est de $\epsilon = 75\%$?
 - Il y a ensuite 600 kg d'eau à évaporer.
 - La chaleur latente de vaporisation est de $h_{\rm fg}$ = 2257 kJ/kg à 100°C
 - $-E_{perte\ evap\ eau}=m_{eau}h_{fg}$ = 1 354 200 kJ
 - Évaporer l'eau demande donc h_{fg} / [c_p Δ T] fois plus d'énergie que de l'amener à ébullition: 6,72 fois si Δ T = 80°C!

- Combien d'énergie peut-on extraire d'une tonne de biomasse à 40% de siccité et à 20° C si le rendement de combustion est de $\epsilon = 75\%$?
 - Il y a au total 400 kg de bois sec;
 - Le PCI de la biomasse sèche (dry) de 400 kg pourrait être de (cette valeur dépend de l'essence, ici valeur générique proposée par l'ADEME (France)): 5330 kWh/tonne (5,33 kWh/kg) ou 19,19 MJ/kg ou 19188 kJ/kg. Proche d'un rapport de Oak Ridge Natl Lab;
 - Le PCI des <u>matières organiques</u> varie de 3,6 (saule) à 5 kWh/kg (autres plantes).

- Combien d'énergie peut-on extraire d'une tonne de biomasse à 40% de siccité et à 20° C si le rendement de combustion est de $\epsilon = 75\%$?
 - Il faut calculer l'énergie de combustion de 400 kg de bois sec
 - $-E_{gain\ combustion\ bois} = \epsilon\ m_{bois,sec}$ PCI= 5 756 400 kJ
 - Ainsi, l'énergie nette produite par la combustion est d'environ 73% de celle contenue dans la biomasse totale puisque dans ce cas, 1 555 800 kJ DOIVENT d'abord être employés pour chauffer et évaporer l'eau.

Il faut donc tenir compte de l'humidité de l'approvisionnement en biomasse.


- Combien d'énergie peut-on extraire d'une tonne de biomasse à 40% de siccité et à 20° C si le rendement de combustion est de $\epsilon = 75\%$?
 - Enfin, quelle différence ça fait de condenser la vapeur d'eau produite par la combustion du bois et présente dans les produits de combustion?
 - Selon Oak Ridge, le PCI du bois est de 19,551 MJ/kg et le PCS est de 20,589 MJ/kg. Il y a donc une différence de 1,038 MJ/kg (mais sur une base sèche (dry) donc ici on considère 400 kg pas 1000 kg).
 - Il y aurait donc 415 200 kJ de différence ou 7,2% environ.

- Comment relier le PCI (ou LHV) basé sur une masse sèche (dry), D, au PCI réel d'une biomasse humide (wet), W?
- Gogreen and solar (https://www.gogreenandsolar.com/) proposent:

$$LHV_W = LHV_D \left[1 - \frac{w}{100} \right] - 2,44 \left[\frac{w}{100} \right] \text{ MJ/kg}$$

$$w = \frac{m_w}{m_D + m_w}$$

• L'expression entre crochets est la siccité et w est exprimé en %

- Quel est le rendement d'une centrale de cogénération?
 - Dans une centrale de cogénération (électricité et vapeur) à la biomasse forestière, de 30 à 35 % de l'énergie de la biomasse solide (cycle vapeur) peut être convertie en électricité.
 - En utilisant à diverses fins la chaleur produite, le rendement total peut dépasser 80 %.
 - https://www.hydroquebec.com/data/developpement-durable/pdf/fiche-biomasse.pdf
 - Dan ce cours, un rendement de cogénération (combiné électricité et chaleur) de 60% est considéré comme intéressant.

- Quel est le rendement thermique des chaudières à combustion ?
 - Moyenne: entre 70 et 80%
 - Systèmes performants: entre 80 et 85%
 - Avec économiseur de cheminée: entre 85 et 90%
 - Avec condensateur: Plus de 90%

Plan de la présentation

- Introduction et objectifs de la capsule
- Tétraèdre du feu
- Types de combustion
- Chimie de la combustion
- Energie dégagée et pouvoir calorifique
- Applications
- Conclusion

Conclusion

- La réaction de combustion existe naturellement et semble maitrisée par l'Homme depuis toujours (âge du feu).
- Elle est utilisée par l'Homme dans de nombreux domaines d'applications allant de tâches quotidiennes à l'industrie en passant par les transports.
- Utilisée de manière durable la combustion de biomasse est une alternative à l'utilisation des hydrocarbures fossiles.
- Cette réaction reste malheureusement aujourd'hui encore l'un des facteurs primaires des émissions de gaz à effet de serre relâchés dans l'air en raison des carburants choisis et des cycles de régénération (parfois) trop courts.

Lorsque cette capsule de formation est présentée en asynchrone (PDF récupérable sur le site du cours), si vous avez des questions à formuler, veuillez les poser par écrit et spécifier le nom et le numéro de la présentation. Nous vous répondrons le plus rapidement possible.

Période de questions

