Symbols

Α	area, m ²	Fo
A_b	area of prime (unfinned) surface, m ²	Fr
A_c	cross-sectional area, m ²	f
A_p	fin profile area, m ²	G
Á _r	nozzle area ratio	Gr
а	acceleration, m/s ² ; speed of sound, m/s	Gz
Bi	Biot number	g
Bo	Bond number	H
С	molar concentration, kmol/m ³ ; heat capacity rate, W/K	h
C_D	drag coefficient	h_{fg}
C_{f}	friction coefficient	h'_{fg}
$\dot{C_t}$	thermal capacitance, J/K	h_{sf}
Со	Confinement number	h_m
С	specific heat, J/kg · K; speed of light, m/s	$h_{\rm rad}$
C_p	specific heat at constant pressure, J/kg · K	Ι
c_v	specific heat at constant volume, J/kg·K	i
D	diameter, m	
D_{AB}	binary mass diffusivity, m ² /s	J
D_b	bubble diameter, m	Ja
D_h	hydraulic diameter, m	J_i^*
d	diameter of gas molecule, nm	
Ε	thermal plus mechanical energy, J; electric potential, V; emissive power, W/m ²	\dot{J}_i
E^{tot}	total energy, J	j_H
Ec	Eckert number	j_m
\dot{E}_{g} \dot{E}_{in}	rate of energy generation, W	k
\dot{E}_{in}	rate of energy transfer into a control volume, W	k_B
\dot{E}_{out}	rate of energy transfer out of control volume, W	k_0
$\dot{E}_{ m st}$	rate of increase of energy stored within a control volume, W	k_1
е	thermal internal energy per unit mass, J/kg;	
	surface roughness, m	k_1''
F	force, N; fraction of blackbody radiation in a	L
	wavelength band; view factor	Le

Fourier number
Froude number
friction factor; similarity variable
irradiation, W/m ² ; mass velocity, kg/s · m ²
Grashof number
Graetz number
gravitational acceleration, m/s ²
nozzle height, m; Henry's constant, bars
convection heat transfer coefficient, $W/m^2 \cdot K$;
Planck's constant, J · s
latent heat of vaporization, J/kg
modified heat of vaporization, J/kg
latent heat of fusion, J/kg
convection mass transfer coefficient, m/s
radiation heat transfer coefficient, W/m ² · K
electric current, A; radiation intensity, $W/m^2 \cdot sr$
electric current density, A/m ² ; enthalpy per unit
mass, J/kg
radiosity, W/m ²
Jakob number
diffusive molar flux of species <i>i</i> relative to the
mixture molar average velocity, kmol/s · m ²
diffusive mass flux of species <i>i</i> relative to the
mixture mass average velocity, kg/s · m ²
Colburn <i>j</i> factor for heat transfer
Colburn <i>j</i> factor for mass transfer
thermal conductivity, W/m · K
Boltzmann's constant, J/K
zero-order, homogeneous reaction rate
constant, kmol/s \cdot m ³
first-order, homogeneous reaction rate
constant, s^{-1}
first-order, surface reaction rate constant, m/s
length, m

Lewis number

М	mass, kg	$R_{t,o}$	thermal resistance of fin array, K/W
\dot{M}_i	rate of transfer of mass for species, <i>i</i> , kg/s	r_o	cylinder or sphere radius, m
$\dot{M}_{i,g}$	rate of increase of mass of species <i>i</i> due to	r, φ, z	cylindrical coordinates
<i>1,g</i>	chemical reactions, kg/s	r, θ, φ	spherical coordinates
$\dot{M}_{ m in}$	rate at which mass enters a control volume, kg/s	S	solubility, kmol/ $m^3 \cdot atm$; shape factor for
M _m M _{out}	rate at which mass leaves a control	5	two-dimensional conduction, m; nozzle
out	volume, kg/s		pitch, m; plate spacing, m; Seebeck
$\dot{M}_{\rm st}$	rate of increase of mass stored within a		coefficient, V/K
IVI st	control volume, kg/s	S_c	solar constant, W/m ²
\mathcal{M}_i	molecular weight of species <i>i</i> , kg/kmol	S_c S_D, S_L, S_T	diagonal, longitudinal, and transverse pitch
Ma	Mach number	S_D, S_L, S_T	of a tube bank, m
m	mass, kg	Sc	Schmidt number
m	mass, kg mass flow rate, kg/s	Sh	Sherwood number
m_i	mass flow rate, kg/s mass fraction of species i , ρ_i/ρ	St	Stanton number
N N	integer number	T T	temperature, K
N_L, N_T	number of tubes in longitudinal and	t	time, s
I_{V_L}, I_{V_T}	transverse directions	U U	overall heat transfer coefficient, $W/m^2 \cdot K$;
Nu	Nusselt number	0	internal energy, J
NTU	number of transfer units	u, v, w	mass average fluid velocity components, m/s
	molar transfer rate of species <i>i</i> relative to	u, v, w u*, v*, w*	
N _i	fixed coordinates, kmol/s	$U^{\circ}, U^{\circ}, W^{\circ}$ V	volume, m ³ ; fluid velocity, m/s
N''_i	molar flux of species <i>i</i> relative to fixed	v	specific volume, m ³ /kg
IVi	coordinates, kmol/s \cdot m ²	U W	width of a slot nozzle, m
\dot{N}_i	molar rate of increase of species <i>i</i> per unit	Ŵ	rate at which work is performed, W
IVi	volume due to chemical reactions,	w We	Weber number
	kmol/s \cdot m ³	X	vapor quality
N_i''	surface reaction rate of species <i>i</i> ,		Martinelli parameter
IVi	kmol/s \cdot m ²	X_{tt} X, Y, Z	components of the body force per unit
\mathcal{N}	Avogadro's number	Λ, Ι, Ζ	volume, N/m ³
n_i''	mass flux of species <i>i</i> relative to fixed	x, y, z	rectangular coordinates, m
n _i	coordinates, kg/s \cdot m ²		critical location for transition to turbulence, m
\dot{n}_i	mass rate of increase of species <i>i</i> per unit	x_c	concentration entry length, m
n _i	volume due to chemical reactions,	$x_{\mathrm{fd},c}$	hydrodynamic entry length, m
	kg/s \cdot m ³	$x_{\mathrm{fd},h}$	thermal entry length, m
Р	power, W; perimeter, m	$x_{\mathrm{fd},t}$ x_i	mole fraction of species $i, C_i/C$
P_L, P_T	dimensionless longitudinal and transverse	Z	thermoelectric material property, K^{-1}
1 L, 1 T	pitch of a tube bank	L	diemoeleette material property, K
Pe	Peclet number	Greek Lett	ers
Pr	Prandtl number	α	thermal diffusivity, m ² /s; accommodation
p	pressure, N/m ²	u	coefficient; absorptivity
$\overset{P}{Q}$	energy transfer, J	β	volumetric thermal expansion coefficient, K^{-1}
$\frac{\varphi}{q}$	heat transfer rate, W	Г	mass flow rate per unit width in film
\dot{q}	rate of energy generation per unit	•	condensation, kg/s · m
9	volume, W/m ³	γ	ratio of specific heats
q'	heat transfer rate per unit length, W/m	δ	hydrodynamic boundary layer thickness, m
q''	heat flux, W/m ²	δ_c	concentration boundary layer thickness, m
q^*	dimensionless conduction heat rate	δ_p	thermal penetration depth, m
R	cylinder radius, m; gas constant, J/kg·K	δ_t	thermal boundary layer thickness, m
R	universal gas constant, J/kmol·K	ε	emissivity; porosity; heat exchanger
Ra	Rayleigh number		effectiveness
Re	Reynolds number	\mathcal{E}_{f}	fin effectiveness
R _e	electric resistance, Ω	η	thermodynamic efficiency; similarity variable
R _f	fouling factor, $m^2 \cdot K/W$	η_f	fin efficiency
R_m	mass transfer resistance, s/m ³	η_o	overall efficiency of fin array
$R_{m,n}$	residual for the <i>m</i> , <i>n</i> nodal point	θ	zenith angle, rad; temperature difference, K
R_{t}	thermal resistance, K/W	ĸ	absorption coefficient, m^{-1}
$R_{t,c}$	thermal contact resistance, K/W	λ	wavelength, μm
$R_{t,f}$	fin thermal resistance, K/W	$\lambda_{ m mfp}$	mean free path length, nm
*:J		mp	

Symbols

μ	viscosity, kg/s · m	h	hydrodynamic; hot fluid; helical	
ν	kinematic viscosity, m^2/s ; frequency of radiation, s^{-1}	i	general species designation; inner surface of an annulus; initial condition; tube inlet	
0	mass density, kg/m ³ ; reflectivity		condition; incident radiation	
ρ		L		
ρ_e	electric resistivity, Ω/m	L 1	based on characteristic length	
σ	Stefan–Boltzmann constant, $W/m^2 \cdot K^4$; electrical		saturated liquid conditions	
	conductivity, $1/\Omega \cdot m$; normal viscous stress,	lat	latent energy	
A	N/m^2 ; surface tension, N/m	lm m	log mean condition	
Φ	viscous dissipation function, s ⁻²		mean value over a tube cross section	
φ	volume fraction		maximum	
ϕ	azimuthal angle, rad	0	center or midplane condition; tube outlet	
ψ	stream function, m ² /s		condition; outer	
au	shear stress, N/m ² ; transmissivity	р	momentum	
ω	solid angle, sr; perfusion rate, s^{-1}	ph	phonon	
		R	reradiating surface	
Subscri	pts	r, ref	reflected radiation	
A, B	species in a binary mixture	rad	radiation	
abs	absorbed	S	solar conditions	
am	arithmetic mean	S	surface conditions; solid properties;	
atm	atmospheric		saturated solid conditions	
b	base of an extended surface; blackbody	sat	saturated conditions	
С	carnot	sens	sensible energy	
с	cross-sectional; concentration; cold fluid; critical	sky	sky conditions	
cr	critical insulation thickness	SS	steady state	
cond	conduction	sur	surroundings	
conv	convection	t	thermal	
CF	counterflow	tr	transmitted	
D	diameter; drag	υ	saturated vapor conditions	
dif	diffusion	x	local conditions on a surface	
е	excess; emission; electron	λ	spectral	
evap	evaporation	~	free stream conditions	
f	fluid properties; fin conditions; saturated liquid			
5	conditions	Supersc	rscripts	
fc	forced convection	*	molar average; dimensionless quantity	
fd	fully developed conditions		•	
g	saturated vapor conditions	Overbar		
H	heat transfer conditions	-	surface average conditions; time mean	
			U ,	

xxiii