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Preface

THIS book originated in a course of lectures held at Columbia University,
New York, during the summer session of 1936.

It is an elementary treatise throughout, based entirely on pure thermo-
dynamics; however, it is assumed that the reader is familiar with the fun-
damental facts of thermometry and calorimetry. Here and there will be
found short references to the statistical interpretation of thermodynamics.

As a guide in writing this book, the author used notes of his lectures
that were taken by Dr. Lloyd Motz, of Columbia University, who also
revised the final manuscript critically. Thanks are due him for his willing
and intelligent collaboration.

E. FERMI

The Nobel Prize for Physics in 1938 was awarded to Enrico Fermi for his
demonstrations of the existence of new radioactive elements produced by neutron

irradiation, and for his related discovery of nuclear reactions brought about by
slow neutrons.
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Corrections

Within this edition, certain parts of the original work were changed. This
is especially in the cases whereby the error is obvious or in some conven-
tions which are no longer used. A notable example is the unit for temper-
ature, kelvin, which was written as ◦K by Enrico Fermi. Now, the conven-
tion is to write the unit as just K.

Copyright

As fifty or more years have passed since the death of the author, this book
is now in the public domain of Malaysia.
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Introduction

THERMODYNAMICS is mainly concerned with the transformation of heat
into mechanical work and the opposite transformation of mechanical work
into heat.

Only in comparatively recent times have physicists recognized that
heat is a form of energy that can be changed into other forms of energy.
Formerly, scientist had thought that heat was some sort of fluid whose to-
tal amount was invariable, and had simply interpreted the heating of a
body and analogous process as consisting of the transfer of this fluid from
one body to another. It is, therefore, noteworthy that on the basis of this
heat-fluid theory Carnot was able in the year 1824, to arrive at a compar-
atively clear understanding of the limitations involved in the transforma-
tion of heat into work, that is, of essentially what is now called the second
law of thermodynamics (see Chapter 4).

In 1842, only eighteen years later, R. J. Mayer discovered the equiva-
lence of heat and mechanical work, and made the first announcement of
the principle of conservation of energy (the first law of thermodynamics).

We know today that the actual basis of the equivalence of heat and dy-
namical energy is to be sought in the kinetic interpretation, which reduces
all thermal phenomena to the disordered motions of atoms and molecules.
From this point of view, the study of heat must be considered as a special
branch of mechanics: the mechanics of an ensemble of such an enormous
number of particles (atoms of molecules) that the detailed description of
the state and the motion loses importance and only average properties of
large numbers of particles are to be considered. This branch of mechan-
ics, called statistical mechanics, which has been developed mainly through
the work of Maxwell, Boltzmann, and Gibbs, has led to a very satisfactory
understanding of the fundamental thermodynamical laws.

But the approach in pure thermodynamics is different. Here the funda-
mental laws are assumed as postulates based on experimental evidence,
and conclusions are drawn from them without entering into the kinetic
mechanism of the phenomena. This procedure has the advantage of being
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independent, to a great extent, of the simplifying assumptions that are of-
ten made in statistical mechanical considerations. Thus, thermodynamical
results are generally highly accurate. On the other hand, it is sometimes
rather unsatisfactory to obtain results without being able to see in detail
how things really work, so that in many respects it is very often conve-
nient to complete a thermodynamical result with at least a rough kinetic
interpretation.

The first and second law of thermodynamics have their statistical foun-
dation in classical mechanics. In recent years Nernst has added a third law
which can be interpreted statistically only in terms of quantum mechan-
ical concepts. The last chapter of this book will concern itself with the
consequence of the third law.
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Chapter 1

Thermodynamic Systems

1.1 The state of a system and its transformations.

The state of a system in mechanics is completely specified at a given in-
stant of time if the position and velocity of each mass-point of the system
is given. For a system composed of a number N of mass-points, this re-
quires the knowledge of 6N variables.

In thermodynamics a different and much simpler concept of the state
of a system is introduced. Indeed, to use the dynamical definition of
state would be inconvenient, because all the system which are dealt with
in thermodynamics contain a large number of mass-points (the atoms or
molecules), so that is would be practically impossible to specify the 6N
variables. Moreover, it would be unnecessary to do so, because the quan-
tities that are dealt with in thermodynamics are average properties of the
system; consequently, a detailed knowledge of the motion of each mass-
point would be superfluous.

In order to explain the thermodynamic concept of the state of a system,
we shall first discuss a few examples.

A system composed of a chemically defined homogeneous fluid. We can take
the following measurements on such a system: the temperature t, the vol-
ume V, and the pressure p. The temperature can be measured by placing
a thermometer in contact with the system for an interval of time sufficient
for thermal equilibrium to set in. As is well known, the temperature de-
fined by any special thermometer (for example, a mercury thermometer)
depends on the particular properties of the thermometric substance used.
For the time being, we shall agree to use the same kind of thermometer for
all temperature measurements in order that these may all be comparable.

The geometry of our system is obviously characterized not only by its
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volume, but also by its shape. However, most thermodynamical proper-
ties are largely independent of the shape, and, therefore, the volume is the
only geometrical datum that is ordinarily given. It is only in the cases for
which the ratio of surface to volume is very large (for example, a finely
grained substance) that the surface must also be considered.

For a given amount of the substance contained in the system, the tem-
perature, volume, and pressure are not independent quantities; they are
connected by a relationship of the general form:

f (p, V, t) = 0, (1.1)

which is called the equation of state. Its form depends on the special proper-
ties of the substance. Any one of the three variables in the above relation-
ship can be expressed as a function of the other two by solving equation
(1.1) with respect to the given variable. Therefore, the state of the system
is completely determined by any two of the three quantities, p, V, and t.

It is very often convenient to represent these two quantities graphically
in a rectangular system of co-ordinates. For example, we may use a (V, p)
representation, plotting V along the abscissae axis and p along the ordinate
axis. A point on the (V, p) plane thus defines a state of the system. The
points representing states of equal temperature lie on a curve which is
called an isothermal.

A system composed of a chemically defined homogeneous solid. In this case,
besides the temperature t and volume V, we may introduce the pressures
acting in different directions in order to define the state. In most cases,
however, the assumption is made that the solid is subjected to an isotropic
pressure, so that only one value for the pressure need to be considered, as
in the case of a fluid.

A system composed of a homogeneous mixture of several chemical compounds.
In this case the variables defining the state of the system are not only tem-
perature, volume, and pressure, but also the concentrations of the different
chemical compounds composing the mixture.

Nonhomogeneous systems. In order to defined the state of a nonhomo-
geneous system, one must be able to divide it into a number of homo-
geneous parts. This number may be finite in some cases and infinite in
others. The latter possibility, which is only seldom considered in thermo-
dynamics, arises when the properties of the system, or at least of some of
its parts, vary continuously from point to point. The state of the system
is then defined by giving the mass, the chemical composition, the state of
aggregation, the pressure, the volume, and the temperature of each homo-
geneous part.
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It is obvious that these variables are not all independent. Thus, for ex-
ample, the sum of the amounts of each chemical element present in the dif-
ferent homogeneous parts must be constant and equal to the total amount
of that element present in the system. Moreover, the volume, pressure,
and the temperature of each homogeneous part having a given mass and
chemical composition are connected by an equation of state.

A system containing moving parts. In almost every system that is dealt
with in thermodynamics, one assumes that the different parts of the sys-
tem either are at rest or are moving so slowly that their kinetic energies
may be neglected. If this is not the case, one must also specify the veloc-
ities of the various parts of the system in order to define the state of the
system completely.

It is evident from what we have said that the knowledge of the ther-
modynamical state alone is by no means sufficient for the determination
of the dynamical state. Studying the thermodynamical state of a homoge-
neous fluid of given volume at a given temperature (the pressure is then
defined by the equation of state), we observe that there is an infinite num-
ber of states of molecular motion that correspond to it. With increasing
time, the system exists successively in all these dynamical states that cor-
respond to the given thermodynamical state. From this point of view we
may say that a thermodynamical state is the ensemble of all the dynami-
cal states through which, as a result of the molecular motion, the system
is rapidly passing. This definition of state is rather abstract and not quite
unique; therefore, we shall indicate in each particular case what the state
variables are.

Particularly important among the thermodynamical states of a system
are the states of equilibrium. These states have the property of not varying
so long as the external conditions remain unchanged. Thus, for instance, a
gas enclosed in a container of constant volume is in equilibrium when its
pressure is constant throughout and its temperature is equal to that of the
environment.

Very often we shall have to consider transformations of a system from
an initial state to a final state through a continuous succession of inter-
mediate states. If the state of the system can be represented on a (V, p)
diagram, such a transformation will be represented by a curve connecting
the two points that represent the initial and final states. A transformation
is said to be reversible when the successive states of the transformation dif-
fer by infinitesimals from equilibrium states. A reversible transformation
can therefore connect only those initial and final states which are states
of equilibrium. A reversible transformation can be realized in practice by
changing the external conditions so slowly that the system has time to ad-
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just itself gradually to the altered conditions. For example, we can produce
a reversible expansion of a gas by enclosing it in a cylinder with a movable
piston and shifting the piston outward very slowly. If we were to shift the
piston rapidly, currents would be set up in the expanding gaseous mass,
and the intermediate states would not longer be states of equilibrium.

If we transform a system reversibly from an initial state A to a final
state B, we can then take system by means of the reverse transformation
from B to A through the same succession of intermediate states but in the
reverse order. To do this, we need simply change the conditions of the en-
vironment very slowly in the sense opposite to that in the original transfor-
mation. Thus, in the case of the gas discussed in the preceding paragraph,
we may compress it again to its original volume and bring it back to its
initial state by shifting the piston inward very slowly. The compression
occurs reversibly, and the gas passes through the same intermediate states
as it did during the expansion.

During a transformation, the system can perform positive or negative
external work; that is, the system can do work on its surroundings or the
surroundings can do work on the system. As an example of this, we con-
sider a body enclosed in a cylinder having a movable piston of area S at
one end (Figure 1.1). If p is the pressure of the body against the walls of
the cylinder, then pS is the force exerted by the body on the piston. If the
piston is shifted an infinitesimal distance dh, and infinitesimal amount of
work,

dL = pSdh, (1.2)

is performed, since the displacement is parallel to the force. But Sdh is
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equal to the increase, dV, in volume of the system. Thus, we may write1:

dL = pdV. (1.3)

Figure 1.1: Expansion of gas using a piston.

For a finite transformation, the work done by the system is obtained by
integrating (1.3):

L =
∫ B

A
pdV, (1.4)

where the integral is taken over the entire transformation.
When the state of the system can be represented on a (V, p) diagram,

the work performed during a transformation has a simple geometrical rep-
resentation. We consider a transformation from an initial state indicated

1It is obvious that (1.3) is generally valid no matter what the shape of the container be.
Consider a body at the uniform pressure p, enclosed in an irregularly shape container A
(Figure 1.1). Consider now an infinitesimal transformation of our system during which
the walls of the container move from the initial position A to the final position B, thus
permitting the body inside the container to expand. Let d0 be a surface element of the
container, and let dn be the displacement of this element in the direction normal to the
surface of the container. The work performed on the surface element dσ by the pressure p
during the displacement of the container from situation A to the situation B is obviously
pdσ dn. The total amount of work performed during the infinitesimal transformation is
obtained by integrating the above expression over all the surface σ of the container; since
p is a constant we obtain:

dL = p
∫

dσ dn.

It is now evident from the figure that the variation dV of the volume of the container is
given by the surface integral,

dV =
∫

dσ dn.

Comparing these two equations, we obtain (1.3).
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Figure 1.2: Expansion of gas in a irregular shape container.

by the point A to a final state indicated by the point B (Figure 1.1). This
transformation will be represented by a curve connecting A and B the
shape of which depends on the type of transformation considered. The
work done during this transformation is given by the integral

L =
∫ VB

VA

pdV, (1.5)

where VA and VB are the volumes corresponding to the states A and B.
This integral, and hence the work done, can be represented geometrically
by the shaded area in the figure.

Figure 1.3: Transformation on (V, p) diagram.

Transformations which are especially important are those for which the
initial and final states are the same. These are called cyclical transformations
or cycles. A cycle, therefore, is a transformation which brings the system
back to its initial state. If the state of the system can be represented on a
(V, p) diagram, then a cycle can be represented on this diagram by a closed
curve, such as the curve ABCD (Figure 1.1).
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Figure 1.4: A cyclical transformation.

The work, L, performed by the system during the cyclical transforma-
tion is given geometrically by the area enclosed by the curve representing
the cycle. Let A and C be the points of minimum and maximum abscissa
of our cycle, and let their projections on the V-axis be A′ and C′, respec-
tively. The work performed during the part ABC of the transformation
is positive and equal to the are ABCC′A′A. The work performed during
the rest of the transformation, CDA, is negative and equal in amount to
the area CC′A′A′DC. The total amount of positive work done is equal
to the difference between these two areas, and hence is equal to the area
bounded by the cycle.

It should be noted that the total work done is positive because we per-
formed the cycle in a clockwise direction. If the same cycle is performed
in a counterclockwise direction, the area will again be given by the area
bounded by the cycle, but this time it will be negative.

A transformation during which the system performs no external work
is called an isochore transformation. If we assume that the work dL per-
formed during an infinitesimal element of the transformation is given, ac-
cording to equation (1.3), by pdV, we find for an isochore transformation
dV = 0, or, by integration, V = a constant. Thus, an isochore transforma-
tion in this case is a transformation at constant volume. This fact justifies
the name isochore. It should be noticed, however, that the concept of iso-
chore transformation is more general, since it requires that dL = 0 for
the given transformation, even when the work dL cannot be represented
by equation (1.3). Transformations during which the pressure or the tem-
perature of the system remains constant are called isobaric and isothermal
transformations, respectively.
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1.2 Ideal or perfect gases.

The equation of state of a system composed of a certain quantity of gas
occupying a volume V at the temperature t and pressure p can be approx-
imately expressed by a very simple analytical law. We obtain the equation
of state of a gas in its simplest form by changing from the empirical scale
of temperatures, t, used so far to a new temperature scale T.

We define T provisionally as the temperature indicated by a gas ther-
mometer in which the thermometric gas is kept at a very low constant
pressure. T is then taken proportional to the volume occupied by the gas.
It is well known that the readings of different gas thermometers under
these conditions are largely independent of the nature of the thermomet-
ric gas, provided that this gas is far enough from condensation. We shall
see later, however (Section 3.3), that it is possible to define this same scale
of temperature T by general thermodynamic considerations quite inde-
pendently of the special properties of gases.

The temperature T is called the absolute temperature. Its unit is usually
chosen in such a way that the temperature difference between the boiling
and the freezing points of water at one atmosphere of pressure is equal to
100. The freezing point of water corresponds then, as is well known, to the
absolute temperature 273.1.

The equation of state of a system composed of m grams of a gas whose
molecular weight is Mis given approximately by:

pV =
m
M

RT. (1.6)

R is a universal constant (that is, it has the same value for all gases: R =
8.314× 107 erg/degrees, or (see Section 2.1) R = 1.986 cal/degrees). Equa-
tion (1.6) is called the equation of state of an ideal or a perfect gas; it includes
the law of Boyle, Gay-Lussac, and Avogadro.

No real gas obeys equation (1.6) exactly. An ideal substance that obeys
equation (1.6) is called an ideal or a perfect gas.

For a gram-molecule (or mole) of a gas (that is, for a number of grams
of a gas equal numerically to its molecular weight), we have m = M, so
that (1.6) reduces to:

pV = RT. (1.7)

From (1.6) or (1.7) we can obtain the density ρ of the gas in terms of pres-
sure and the temperature:

ρ =
m
V

=
Mp
RT

. (1.8)
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For an isothermal transformation of an ideal gas (transformation at
constant temperature), we have:

pV = constant.

On the (V, p) diagram the isothermal transformations of an ideal gas are
thus represented by equilateral hyperbolas having the V- and p-axes as
asymptotes.

We can easily calculate the work performed by the gas during an isother-
mal expansion from an initial volume V1 to a final volume V2. This is given
(making use of (1.5) and (1.6) by:

L =
∫ V2

V1

pdV =
m
M

RT
∫ V2

V1

dV
V

=
m
M

RT ln
V2

V1

=
m
M

RT ln
p1

p2
,

(1.9)

where p1 and p2 are the initial and final pressures, respectively. For one
mole of gas, we have:

L = RT ln
V2

V1
= RT ln

p1

p2
. (1.10)

A mixture of several gases is governed by laws of very similar to those
which are obeyed by a chemically homogeneous gas. We shall call the
partial pressure of a component of a mixture of gas the pressure which this
component would exert if it alone filled the volume occupied by the mix-
ture at the same temperature as that of the mixture. We can not state Dal-
ton’s law for gas mixtures in the following form:

The pressure exerted by a mixture of gases is equal to the
sum of the partial pressures of all the components present in
the mixture.

This laws is only approximately obeyed by real gases, but it is assumed to
hold exactly for ideal gases.

Problems

1. Calculate the work performed by a body expanding from an initial
volume of 3.12 liters to a final volume of 4.01 liters at the pressure of
2.34 atmospheres.
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2. Calculate the pressure of 30 grams of hydrogen inside a container of
1 cubic meter at the temperature of 18◦C.

3. Calculate the density and specific volume of nitrogen at the temper-
ature of 0◦C.

4. Calculate the work performed by 10 grams of oxygen expanding
isothermally at 20◦C from 1 to 0.3 atmospheres of pressure.
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Chapter 2

The First Law of Thermodynamics

2.1 The statement of the first law of thermody-
namics.

The first law of thermodynamics is essentially the statement of the prin-
ciple of conservation of energy for thermodynamical systems. As such, it
may be expressed by stating that the variation in energy of a system dur-
ing any transformation is equal to the amount of energy that the system
receives from its environment. In order to give a precise meaning to this
statement, it is necessary to define the phrases “energy of the system” and
“energy that the system receives from its environment during a transfor-
mation”.

In purely mechanical conservative systems, the energy is equal to the
sum of the potential and the kinetic energies, and hence is a function of
the dynamical state of the system; because to know the dynamical state
of the system is equivalent to knowing the positions and velocities of all
the mass-points contained in the system. If no external forces are acting
on the system, the energy remains constant. Thus, if A and B are two suc-
cessive states of an isolated system, and UA and UB are the corresponding
energies, then

UA = UB.

When external forces act on the system, UA need no longer to be equal
to UB. If −L is the work performed by the external forces during a trans-
formation from the initial state A to the final state B (+L is the work per-
formed by the system), then the dynamical principle of the conservation
of energy takes the form:

UB −UA = −L. (2.1)
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From this equation it follows that the work, L, performed during the
transformation depends only on the extreme states A and B of the trans-
formation and not the particular way in which the transformation from A
to B is performed.

Let us assume now that we do not know the laws of interaction among
the various mass-point of our dynamical system. Then we cannot calcu-
late the energy of the system when it is in a given state. By making use
of equation (2.1), however, we can nevertheless obtain an empirical defi-
nition of the energy of our system in the following way:

We consider an arbitrarily chosen state O of our system and, by defini-
tion, take its energy to be zero:

UO = 0. (2.2)

We shall henceforth refer to this state as the standard state of our system.
Consider now any other state A; by applying suitable external forces to
our system, we can transform it from the standard state (in which we as-
sume it to be initially) to the state A. Let LA be the work performed by the
system during this transformation (−LA is, as before, the work performed
by the external forces on the system). Applying (2.1) to this transforma-
tion, and remembering (2.2) we find that

UA = −LA. (2.3)

This equation can be used as the empirical definition of the energy UA of
our system in the state A.

It is obviously necessary, if definition (2.3) is to have a meaning, that
the work LA depend only on the states O and A and not on the special way
in which the transformation from O to A is performed. We have already
noticed that this property follows from (2.1). If one found experimentally
that this property did not hold, it would mean either that energy is not
conserved in our system, or that, besides mechanical work, other means
of transfer of energy must be taken into account.

We shall assume for the present that the work performed by our me-
chanical system during any transformation depends only on the initial and
final states of the transformation, so that we can use (2.3) as the definition
of the energy.

We can immediately obtain (2.1) from (2.3) as follows: A transforma-
tion between any two states A and B can always be performed as a succes-
sion of two transformations: first a transformation from A to the standard
state O, and then a transformation from O to B. Since the system performs
the amounts of work −LA and +LB during these two transformations, the
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total amount of work performed during the transformation from A and B
(which is independent of the particular way in which the transformation
is performed) is:

L = −LA + LB.

From (2.3) and the analogous equation,

UB = −LB,

we obtain now:
UB −UA = −L,

which is identical with (2.1).
We notice, finally, that the definition (2.3) of the energy is not quite

unique, since it depends on the particular choice of the standard state O.
If instead of O we had chosen a different standard state, O′, we should
have obtained a different value, U′A, for the energy of the state A. It can
be easily shown, however, that U′A and UA differ only by an additive con-
stant. Indeed, the transformation from O′ to A can be put equal to the sum
of two transformations: one going from O′ to O and the other going from
O to A. The work L′A performed by the system in passing from O′ to A is
thus equal to:

L′A = LO′O + LA,

where LO′O is the work performed by the system in going to O′ to O. We
have now:

UA = −LA; U′A = −L′A,

so that
UA −U′A = LO′O,

which shows that the values of the energy based on the two definitions
differ only by the constant LO′O.

This intermediate additive constant which appears in the definition of
the energy is, as is well known, an essential feature of the concept of en-
ergy. Since, however, only differences of energy are considered in practice,
the additive constant does not appear in the final results.

The only assumption underlying the above empirical definition of the
energy is that the total amount of work performed by the system dur-
ing any transformation depends only on the initial and final states of the
transformation. We have already noticed that if this assumption is contra-
dicted by experiment, and if we still do not wish to discard the principle
of the conservation of energy, then we must admit the existence of other
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methods, besides mechanical work, by means of which energy can be ex-
changed between the system and its environment.

Let us take, for example, a system composed of a quantity of water. We
consider two states A and B of this system at atmospheric pressure; let the
temperatures of the system in these two states be tA and tB, respectively,
with tA < tB. We can take our system from A to B in two different ways.

First way: We heat the water by placing it over a flame and raise its
temperature from the initial value tA to the final value tB. The external
work performed by the system during this transformation is practically
zero. It would be exactly zero if the change in temperature were not ac-
companied by a change in volume of the water. Actually, however, the
volume of the water changes slightly during the transformation, so that a
small amount of work is performed (see equation (1.3)). We shall neglect
this small amount of work in our considerations.

Second way: We raise the temperature of the water from tA to tB by heat-
ing it by means of friction. To this end, we immerse a small set of paddles
attached to a central axle in the water, and churn the water by rotating the
paddles. We observe that the temperature of the water increases continu-
ously as long as the paddles continue to rotate. Since the water offers resis-
tance to the motion of the paddles, however, we must perform mechanical
work in order to keep the paddles moving until the final temperature tB is
reached. Corresponding to this considerable amount of positive work per-
formed by the paddles on the water, there is an equal amount of negative
work performed by the water in resisting the motion of the paddles.

We thus see that the work performed by the system in going from the
state A to the state B depends on whether we go by means of the first way
or by means of the second way.

If we assume that the principle of the conservation of energy holds for
our system, then we must admit that the energy that is transmitted to the
water in the form of the mechanical work of the rotating paddles in the
second way is transmitted to the water in the first way in a nonmechanical
form called heat. We are thus led to the fact that head and mechanical work
are equivalent; they are two different aspects of the same thing, namely,
energy. In what follows we shall group under the name of work electrical
and magnetic work as well as mechanical work. The first two types of
work, however, are only seldom considered in thermodynamics.

In order to express in a more precise form the fact that heat and work
are equivalent, we proceed as follows.

We first enclose our system in a container with non-heat-conducting
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walls in order to prevent exchange of heat with the environment1. We
assume, however, that work can be exchanged between the system and its
environment (for example, by enclosing the system in a cylinder with non-
conducting walls but with a movable piston at one end). The exchange of
energy between the inside and the outside of the container can now occur
only in the form of work, and from the principle of the conservation of
energy it follows that the amount of work performed by the system during
any transformation depends only on the initial and the final states of the
transformation2.

We can now use the empirical definition (2.3) of the energy and define
the energy U as a function of the state of the system only3. Denoting by
∆U = UB −UA the variation in the energy of our system that occurs dur-
ing a transformation from the state A to the state B, we can write equation
(2.1), which is applicable to our thermally insulated system, in the form:

∆U + L = 0. (2.4)

If our system is not thermally insulated, the left-hand side of (2.4) will
in general be different from zero because there can then take place an ex-
change of energy in the form of heat. We shall therefore replace (2.4) by
the more general equation:

∆U + L = Q, (2.5)

where Q is equal to zero for transformations performed on thermally in-
sulated systems and otherwise, in general, is different from zero.

Q can be interpreted physically as the amount of energy that is received
by the system in forms other than work. This follows immediately from

1We need only mention here that no perfect thermal insulators exist. Thermal insula-
tion can be obtained approximately, however, by means of the well-known methods of
Calorimetry.

2It would be formally more exact, although rather abstract, to state the content of the
preceding sentences as follow:

Experiments show that there exist certain substances called thermal insulators having
the following properties: when a system is completely enclosed in a thermal insulator in
such a way that work can be exchanged between the inside and the outside, the amount
of work performed by the system during a given transformation depends only on the
initial and final states of the transformation.

3It should be noticed here that if definition (2.3) of the energy of a state A of our system
is to be applicable, it must be possible to transform the system from the standard state O
to the sate A while the system is thermally insulated. We shall show later (see Section 4.3)
that such a transformation is not always possible without an exchange of heat. In such
cases, however, the opposite transformation A → 0 can always be performed. The work
performed by the system during this reverse transformation is −LA; we can therefore
apply (2.3) to such cases also.

15



the fact that the variation in energy, ∆U, of the system must be equal to the
total amount of energy received by the system from its environment. But
from (2.5)

∆U = −L + Q,

and −L is the energy received in the form of work. Hence, Q stands for
the energy received in all other forms.

By definition, we shall not call Q the amount of heat received by the
system during the transformation.

For a cyclic transformation, equation (2.5) takes on a very simple form.
Since the initial and final states of a cycle are the same, the variation in
energy is zero: ∆U = 0. Thus (2.5) becomes:

L = Q. (2.6)

That is, the work performed by a system during a cyclic transformation is
equal to the head absorbed by the system.

It is important to establish the connection between this abstract defi-
nition of heat and its elementary calorimetric definition. The calorimetric
unit of heat, the calorie, is defined as the quantity of heat required to raise
the temperature of one gram of water at atmospheric pressure from 14◦C
to 15◦C. Thus, to raise the temperature of m grams of water from 14◦C to
15◦C at atmospheric pressure, we require m calories of heat. Let ∆uc de-
note the variation of energy of one gram of water, and lc the work done as
a result of its expansion when its temperature is raised from 14◦C to 15◦C
at atmospheric pressure. Form m grams of water, the variation in energy
and the work done are:

∆Uc = m∆uc; Lc = mlc. (2.7)

We now consider a system S which undergoes a transformation. In or-
der to measure the heat exchange between the system and the surround-
ing bodies, we place the system in contact with a calorimeter containing m
grams of water, initially at 14◦C. We choose the mass of the water in such
a way that after the transformation has been completed, the temperature
of water is 15◦C.

Since an ideal calorimeter is perfectly insulated thermally, the complex
system composed of the system S and the calorimetric water is thermally
insulated during the transformation. We may therefore apply (2.4) to this
transformation. The total variation in energy is equal to the sum:

∆U = ∆US + ∆Uc,
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where ∆US is the variation in energy of the system S, and ∆Uc is the varia-
tion in energy of the calorimetric water. Similarly, for the total work done,
we have:

L = LS + Lc.

From (2.4) we have, then,

∆US + ∆Uc + LS + Lc = 0;

or, by (2.7),

∆US + LS = − (∆Uc + Lc)

= −m (∆uc + lc) .

But from the definition (2.5), ∆US + LS is the amount of heat QS received
by the system S. Thus, we have:

QS = −m (∆Uc + lc) . (2.8)

We see from this that the amount of heat is proportional to m.
On the other hand, in calorimetry the fact that m grams of calorimetric

water have been heated from 14◦C to 15◦C means that m calories of heat
have been transferred from the system S to the calorimeter; that is, that
the system S has received −m calories, or that QS, expressed in calories,
is equal to −m. We see also, by comparison with (2.8), that the amount of
heat, as given by the definition (2.5), is proportional to the amount when
it is expressed in calories; the constant of proportionality is (∆uc + lc).

According to (2.5), heat is measured in energy units (ergs). The con-
stant ratio between ergs and calories has been measured by many investi-
gators, who have found that

1 calorie = 4.185× 107 ergs. (2.9)

In what follows we shall generally express heat measurements in energy
units.

Equation (2.5), which is a precise formulation of the equivalence of heat
and work, expresses the first law of thermodynamics.

2.2 The application of the first law to systems
whose states can be represented on a (V,p) di-
agram.

We shall now apply the first law of thermodynamics to a system, such as a
homogeneous fluid, whose state can be defined in terms of any two of the

17



three variables V, p, and T. Any function of the state of the system, as, for
example, its energy, U, will then be a function of the two variables which
have been chosen to represent the state.

In order to avoid any misunderstanding as to which are the indepen-
dent variables when it is necessary to differentiate partially, we shall en-
close the partial derivative symbol in a parenthesis and place the variable
that is to be held constant in the partial differentiation at the foot of the

parenthesis. Thus,
(

∂U
∂T

)
V

means the derivative of U with respect to T,

keeping V constant, when T and V are taken as the independent variables.

Notice that the above expression is in general different from
(

∂U
∂T

)
p
, be-

cause in the first case the volume is kept constant while in the second case
the pressure is kept constant.

We now consider an infinitesimal transformation of our system, that
is, a transformation for which the independent variables change only by
infinitesimal amounts. We apply to this transformation the first law of
thermodynamics as expressed by equation (2.5). Instead of ∆U, L, and Q,
we must now write dU, dL, and dQ, in order to point out the infinitesimal
nature of these quantities. We obtain, then,

dU + dL = dQ. (2.10)

Since for our system, dL is given by (1.3), we have:

dU + pdV = dQ. (2.11)

If we choose T and V as our independent variables, U becomes a func-
tion of these variables, so that:

dU =

(
∂U
∂T

)
V

dT +

(
∂U
∂V

)
T

dV,

and (2.11) becomes:(
∂U
∂T

)
V

dT +

[(
∂U
∂V

)
T
+ p

]
dV = dQ. (2.12)

Similarly, taking T and p as independent variables, we have:[(
∂U
∂T

)
p
+ p

(
∂V
∂T

)
p

]
dT +

[(
∂U
∂p

)
T
+ p

(
∂V
∂p

)
T

]
dp = dQ. (2.13)
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Finally, taking V and p as independent variables, we obtain:(
∂U
∂p

)
V

dp +

[(
∂U
∂V

)
p
+ p

]
dV = dQ. (2.14)

The thermal capacity of a body is, by definition, the ratio, dQ/dT, of the
infinitesimal amount of heat dQ absorbed by the body to the infinitesimal
increase in temperature dT produced by this heat. In general, the thermal
capacity of a body will be different according as to whether the body is
heated at constant volume or at constant pressure. Let CV and Cp be the
thermal capacities at constant volume and at constant pressure, respec-
tively.

A simple expression for CV can be obtained from (2.12). For an in-
finitesimal transformation at constant volume, dV = 0; hence,

CV =

(
dQ
dT

)
V
=

(
∂U
∂T

)
V

. (2.15)

Similarly, using (2.13), we obtain the following expression for Cp:

Cp =

(
dQ
dT

)
p
=

(
∂U
∂T

)
p
+ p

(
∂V
∂T

)
p

. (2.16)

The second term on the right-hand side represents the effect on the
thermal capacity of the work performed during the expansion. An analo-
gous term is not present in (2.15), because in that case the volume is kept
constant so that no expansion occurs.

The thermal capacity of one gram of a substance is called the specific
heat of that substance; and the thermal capacity of one mole is called the
molecular heat. The specific and molecular heats at constant volume and at
constant pressure are given by the formulae (2.15) and (2.16) if, instead of
taking an arbitrary amount of substance, we take one gram or one mole of
the substance, respectively.

2.3 The application of the first law to gases.

In the case of a gas, we can express the dependence of the energy on the
state variables explicitly. We choose T and V as the independent variables,
and prove first that the energy is a function of the temperature T only and
does not depend on the volume V. This, like many other properties of
gases, is only approximately true for real gases and is assumed to hold
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exactly for ideal gases. In Section 4.4 we shall deduce from the second law
of thermodynamics the result that the energy of any body which obeys the
equation of state, (1.7), of an ideal gas must be independent of the volume
V. At this point, however, we shall give an experimental proof of this
proposition for a gas; the experiment was performed by Joule.

Into a calorimeter Joule placed a container having two chambers, A
and B, connected by a tube (Figure 2.3). He filled the chamber A with
a gas and evacuated B, the two chambers having first been shut off from
each other by a stopcock in the connecting tube. After thermal equilibrium
had set in, as indicated by a thermometer placed within the calorimeter,
Joule opened the stopcock, thus permitting the gas to flow from A into
B until the pressure everywhere in the container was the same. He then
observed that there was only a very slight change in the reading of the
thermometer. This meant that there had been practically no transfer of
heat from the calorimeter to the chamber or vice versa. It is assumed that
if this experiment could be performed with an ideal gas, there would be
no temperature change at all.

Figure 2.1: Joule’s experiment.

We not apply the first law to the above transformation. Since Q = 0, we
have from equation (2.5) from the system composed of the two chambers
and the enclosed gas:

∆U + L = 0,

where L is the work performed by the system and ∆U is the variation in
energy of the system. Since the volumes of the two chambers A and B
composing our system do not change during the experiment, our system
can perform no external work, that is, L = 0. Therefore,

∆U = 0;

the energy of the system, and, hence, the energy of the gas, do not change.
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Let us now consider the process as a whole. Initially the gas occupied
the volume A, and at the end of the process it filled the two chambers
A and B; that is, the transformation resulted in a change in volume of
the gas. The experiment showed, however, that there was no resultant
change in the temperature of the gas. Since there was not variation in
energy during the process, we must conclude that a variation in volume at
constant temperature produces no variation in energy. In other words, the
energy of an ideal gas is a function of the temperature only and not the function
of the volume. We may therefore write for the energy of an ideal gas:

U = U (T) . (2.17)

In order to determine the form of this function, we make use of the exper-
imental result that the specific heat at constant volume of a gas depends
only slightly on the temperature; we shall assume that for an ideal gas the
specific heat is exactly constant. In this section we shall always refer to
one mole of gas; CV and Cp will therefore denote the molecular heats at
constant volume and at constant pressure, respectively.

Since U depends only on T, it is not necessary to specify that the vol-
ume is also to be kept constant in the derivative in (2.15); so that, for an
ideal gas, we may write:

CV =
dU
dT

. (2.18)

Since CV is assumed to be constant, we can integrate at once, and we get:

U = CVT + W, (2.19)

where W is a constant of integration which represents the energy left in
the gas at absolute zero temperature4.

For an ideal gas, equation (2.11), which expresses the first law of ther-
modynamics for infinitesimal transformations, takes on the form:

CVdT + pdV = dQ. (2.20)

Differentiating the characteristic equation (1.7) for one mole of an ideal
gas, we obtain:

pdV + Vdp = RdT. (2.21)

4This additive constant affects the final results of the calculations only when chemical
transformations or changes of the states of aggregation of the substances are involved.
(See, for example, Chapter 7). In all other cases, one may place the additive constant
equal to zero.
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Substituting this in (2.20), we find:

(CV + R) dT −Vdp = dQ. (2.22)

Since dp = 0 for a transformation at constant pressure, this equation
gives us:

Cp =

(
dQ
dT

)
p
= CV + R. (2.23)

That is, the difference between the molecular heats of a gas at constant
pressure and at constant volume is equal to the gas constant R.

The same result may also be obtained from (2.16), (2.19), and (1.7). In-
deed, for an ideal gas we have from (2.19) and (1.7):(

∂U
∂T

)
p
=

dU
dT

= CV ;
(

∂V
∂T

)
p
=

(
∂

∂T
RT
p

)
p
=

R
p

.

Substituting these expressions in (2.16), we again obtain (2.23).
It can be shown by an application of kinetic theory that:

CV =
3
2

R for a monatomic gas; and

CV =
5
2

R for a diatomic gas.
(2.24)

Assuming these values, which are in good agreement with experiment, we
deduce from (2.23) that:

Cp =
5
2

R for a monatomic gas; and

Cp =
7
2

R for a diatomic gas.
(2.25)

If we place

K =
Cp

CV
=

CV + R
CV

= 1 +
R

CV
, (2.26)

we also obtain:

K =
5
3

for a monatomic gas; and

K =
7
5

for a diatomic gas.
(2.27)
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2.4 Adiabatic transformation of a gas.

An transformation of a thermodynamical system is said to be adiabatic if it
is reversible and if the system is thermally insulated so that no heat can be
exchange between it and its environment during the transformation.

We can expand or compress a gas adiabatically by enclosing it in a
cylinder with non-heat-conducting walls and piston, and shifting the pis-
ton outward or inward very slowly. If we permit a gas to expand adiabati-
cally, it does external work, so that L in equation (2.5) is positive. Since the
gas is thermally insulated, Q = 0, and hence, ∆U must be negative. That
is, the energy of a gas decreases during an adiabatic expansion. Since the
energy is related to the temperature through equation (2.19), a decrease in
energy means a decrease in the temperature of the gas also.

In order to obtain a quantitative relationship between the change in
temperature and the change in volume resulting from an adiabatic expan-
sion of a gas, we observe that, since dQ = 0, equation (2.20) becomes:

CVdT + pdV = 0.

Using the equation state, pV = RT, we can eliminate p from the above
equation and obtain:

CVdT +
RT
V

dV = 0,

or
dT
T

+
R

CV

dV
V

= 0.

Integration yields:

ln T +
R

CV
ln V = constant.

Changing from logarithms to numbers, we get:

TV
R

CV = constant.

Making use of (2.26), we can write the preceding equation in the form:

TVK−1 = constant. (2.28)

This equation tells us quantitatively how an adiabatic change in the
volume of an ideal gas determines the change in its temperature. If, for
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example, we expand a diatomic gas adiabatically to twice its initial vol-

ume, we find from (2.28) (assuming, according to (2.27), that K =
7
5

) that

the temperature is reduced in the ratio 1 : 20.4 = 1 : 1.32.
Using the equation of state, pV = RT, we can put equation (2.28) of an

adiabatic transformation in the following forms:

pVK = constant. (2.29)

T

p
K−1

K
= constant. (2.30)

Equation (2.29) is to be compared with the equation,

pV = constant,

of an isothermal transformation. On the (V, p) diagram, the isothermals
are a family of equilateral hyperbolae; the adiabatic lines represented by
equation (2.29), are qualitatively similar to hyperbolae, but they are steeper
because K > 1.

Isothermal and adiabatic curves are represented in Figure 2.4, the for-
mer by the solid lines and the latter by the dotted lines.

Figure 2.2: Adiabatic change.

An interesting and simple application of the adiabatic expansion of a
gas is the calculation of the dependence of the temperature of the atmo-
sphere on the height above sea level. The principal reason for this varia-
tion of temperature with height above sea level is that there are convec-
tion currents in the troposphere which continually transport air from the
lower regions to the higher ones and from the higher regions to the lower
ones. When air from sea level rises to the upper regions of lower pres-
sure, it expands. Since air is a poor conductor of heat, very little heat is
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transferred to or from the expanding air, so that we may consider the ex-
pansion as taking place adiabatically. Consequently, the temperature of
the rising air decreases. On the other hand, air from the upper regions of
the atmosphere suffers and adiabatic compression, and hence an increase
in temperature, when it sinks to low regions.

In order to calculate the change in temperature, we consider a column
of air of unit cross section, and focus our attention on a slab, of height dh,
having its lower face at a distance h above sea level. If p is the pressure on
the lower face, then the pressure on the upper face will be p + dp, where
dp is the change in pressure which is due to the weight of the air contained
in the slab. If g is the acceleration of gravity and ρ is the density of the air,
then the weight of the air in the slab is ρgdh. Since an increase in height is
followed by a decrease in pressure, we have:

dp = −ρgdh; (2.31)

or, remembering (1.8),

dp = −gM
R

p
T

dh,

where M is the average molecular weight of air; M = 28.88. The logarith-
mic derivative of (2.30) gives us:

dT
T

=
K− 1

K
dp
p

.

This, together with the previous equation, gives:

dT
dh

= −K− 1
K

gM
R

. (2.32)

Assuming

K =
7
5

; g = 980.665; M = 28.88; R = 8.214× 107,

we obtain:

dT
dh

= −9.8× 10−5 degrees/cm.

= −9.8 degrees/kilometer.

This value is actually somewhat larger than the observed average de-
crease of temperature with altitude. The difference is mainly owing to our
having neglected the effect of condensation of water vapor in the expand-
ing masses of air.
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Problems

1. Calculate the energy variation of a system which performs 3.4× 108

ergs of work and absorbs 32 calories of heat.

2. How many calories are absorbed by 3 moles of an ideal gas expand-
ing isothermally from the initial pressure of 5 atmospheres to the
final pressure of 3 atmospheres, at the temperature of 0◦C?

3. One mole of a diatomic ideal gas performs a transformation from an
initial state for which temperature and volume are, respectively, 291
K and 21, 000 cc. to a final state in which temperature and volume
are 305 K and 12, 700 cc. The transformation is represented on the
(V, p) diagram by a straight line. To find the work performed and
the heat absorbed by the system.

4. A diatomic gas expands adiabatically to a volume 1.35 times larger
than the initial volume. The initial temperature is 18◦C. Find the
final temperature.
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Chapter 3

The Second Law of
Thermodynamics

3.1 The statement of the second law of thermo-
dynamics.

The first law of thermodynamics arose as the result of the impossibility of
constructing a machine which could create energy. The first law, however,
places no limitations on the possibility of transforming energy from one
form into another. Thus, for instance, on the basis of the first law alone,
the possibility of transforming heat into work or work into heat always
exists provided the total amount of heat is equivalent to the total amount
of work.

This is certainly true for the transformation of work into heat: A body,
no matter what its temperature may be, can always be heated by friction,
receiving an amount of energy in the same form of heat exactly equal to
the work done. Similarly, electrical energy can always be transformed into
heat by passing an electric current through a resistance. There are very
definite limitations, however, to the possibility of transforming heat into
work. If this were not the case, it would be possible to construct a machine
which could, by cooling the surrounding bodies, transform heat, taken
from its environment, into work.

Since the supply of thermal energy contained in the soil, the water,
and the atmosphere is practically unlimited, such a machine would, to all
practical purposes, be equivalent to a perpetuum mobile, and is therefore
called a perpetuum mobile of the second kind.

The second law of thermodynamics rules out the possibility of con-
structing a perpetuum mobile of the second kind. In order to give a precise
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statement of this law, we shall define what is meant by a source of heat of
a given temperature.

A body which is at the temperature t throughout and is conditioned in
such a way that it can exchange heat but no work with its surroundings
is called a source of heat of temperature t. As examples of this, we may
consider bodies enclosed in rigid containers or bodies which undergo neg-
ligible variations of volume. A mass of water which is at the temperature
t throughout may be taken as a source of heat, since its volume remains
practically constant.

A transformation whose only final result is to transform into work heat ex-
tracted from a source which is at the same temperature throughout is impossible.1

(Postulate of Lord Kelvin.)
The experimental evidence in support of this law consists mainly in the

failure of all efforts that have been made to construct a perpetuum mobile of
the second kind.

The second law can also be expressed as follows:
A transformation whose only final results is to transfer heat from a body at a

given temperature to a body at a higher temperature is impossible. (Postulate of
Clausius.)

Until now we have made use only of an empirical temperature scale.
In order to give a precise meaning to the postulate of Clausius, we must
first define what we mean when we say that one body is at a higher tem-
perature than another body. If we bring two bodies at different tempera-
tures into thermal contact, heat flows spontaneously by conduction from
one of these bodies to the other. By definition, we shall now say that the
body away from which heat flows is at a higher temperature than the other
body. With this understanding, we can now state the postulate of Clausius
as follows:

If heat flows by conduction from a body A to another body B, then a transfor-

1An essential part of Lord Kelvin’s postulate is that the transformation of the heat into
work be the only final result of the process. Indeed, it is not impossible to transform into
work heat taken from a source all at one temperature provided some other change in the
state of the system is present at the end of the process.

Consider, for example, the isothermal expansion of an ideal gas that is kept in thermal
contact with a source of heat at the temperature T. Since the energy of the gas depends
only on the temperature, and the temperature does not change during the process, we
must have ∆U = 0. From the first law, equation (2.5), we obtain, then, L = Q. That is, the
work, L, performed by the expanding gas is equal to the heat Q which it absorbs from the
source. There is thus a complete transformation of heat, Q, into work L. This, however,
is not a contradiction of Kelvin’s postulate, since the transformation of Q into L is not
the only final result of the process. At the end of the process, the gas occupies a volume
larger than it did at the beginning.
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mation whose only final result is to transfer heat from B to A is impossible.
We must now prove the equivalence of the Clausius and the Kelvin

postulates. To do this we shall prove that if the Clausius postulate were
not valid, the Kelvin postulate would not be valid, and vice versa.

Let us first suppose that Kelvin’s postulate were not valid. Then we
could perform a transformation whose only final result would be to trans-
form completely into work a definite amount of heat taken from a single
source at the temperature t1. By means of friction we could then trans-
form this work into heat again and with this heat raise the temperature
of a given body, regardless of what its initial temperature, t2, might have
been. In particular, we could take t2 to be higher than t1. Thus, the only
final result of this process would be the transfer of heat from one body (the
source at the temperature t1) to another body at a higher temperature, t2.
This would be a violation of the Clausius postulate.

The second part of the proof of the equivalence of the two postulates re-
quires first a discussion of the possibilities of transforming heat into work.
We give this discussion in the next section.

3.2 The Carnot cycle.

Since, according to Kelvin’s postulate, it is impossible to transform into
work heat taken from a source at a uniform temperature by a transforma-
tion that leaves no other changes in the system involved in it, we need at
least two sources at different temperatures t1 and t2 in order to perform
such a transformation. If we have two such sources, we can transform
heat into work by the following process, which is called a Carnot cycle.

Consider a fluid whose state can be represented on a (V, p) diagram,
and consider two adiabatics and two isothermals corresponding to the
temperatures t1 and t2. These four curves intersect each other in the four
points A, B, C, and D, as shown in Figure 3.2. Let AB and CD be the
two isothermal lines having the temperatures t2 and t1, respectively. AC
and BD are the two adiabatic lines. The reversible cyclic transformation
ABDCA is called a Carnot cycle.

The following example will illustrate how a Carnot cycle can actually
be performed. We enclose our fluid in a cylindrical container which has
nonconducting lateral walls and a nonconducting piston at one end, so
that heat can leave or enter the cylinder only through the other end (the
base of the cylinder), which we take to be heat-conducting. Let t1 and t2 be
two sources of heat that are so large that their temperatures remain sensi-
bly unaltered when any finite amounts of heat are added to or subtracted
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Figure 3.1: Carnot cycle.

from them. Let t2 be larger than t1.
We assume that initially the volume and the pressure of the fluid in-

side the cylinder are VA and pA, respectively, corresponding to the point
A in Figure 3.2. Since this point lies on the isothermal corresponding to the
temperature t2, the temperature of the fluid is equal to t2 initially. If, there-
fore, we place the cylinder on the source t2, no transfer of heat will occur
(Figure 3.2 A). Keeping the cylinder on the source t2, we raise the piston
very slowly and thus increase the volume reversibly until it has reached
the value VB (Figure 3.2 B). This part of the transformation is represented
by the segment AB of the isothermal t2. The state of our system is now
represented by the point B in Figure 3.2.

We not place the cylinder on a thermal insulator and increase the vol-
ume very slowly until it has reached the value VD (Figure 3.2 D). Since
the system is thermally insulated during this process, the process is rep-
resented in Figure 3.2 by the adiabatic segment BD. During this adiabatic
expansion, the temperature of the fluid decreases from t2 to t1, and the
state of the system is now given by the point D in Figure 3.2.

Placing the cylinder on the source t1, we now compress the fluid very
slowly along the isothermal DC (Figure 3.2) until its volume has decreased
to VC (Figure 3.2 C). Finally, we place the cylinder on the thermal insulator
again and very slowly compress the fluid adiabatically along the segment
CA until its temperature has increased to t2. The system will now be at its
initial state again, which is given by the point A in Figure 3.2 (Figure 3.2
A).

During the isothermal expansion represented by the segment AB, the
system absorbs an amount of heat Q2 from the source t2. During the
isothermal compression represented by the segment DC, the system ab-
sorbs an amount of heat–Q1 from the source t1; that is, it gives up an
amount of heat Q1 to the source t1. Thus, the total amount of heat ab-
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Figure 3.2: Carnot process.

sorbed by the system during the cycle is Q2 − Q1. Let L be the amount of
work done by the system during the transformation. This work is equal to
the area bounded by the cycle in Figure 3.2. Making use of equation (2.6),
which expresses the first law of thermodynamics for a cycle, we have:

L = Q2 −Q1. (3.1)

This equation tells us that only part of the heat that is absorbed by the
system from the source at the higher temperature is transformed into work
by the Carnot cycle; the rest of the heat, Q1, instead of being transformed
into work, is surrendered to the source at the lower temperature.

We define the efficiency of the Carnot cycle as the ratio,

η =
L

Q2
=

Q2 −Q1

Q2
= 1− Q1

Q2
, (3.2)

of the work performed by the cycle to the heat absorbed at the high tem-
perature source.

Since the Carnot cycle is reversible, it can be carried out in the reverse
direction. This can be done by performing all the transformations de-
scribed above in the opposite sense. When this is done, the cycle absorbs
the work L instead of producing it; and it absorbs the amount of heat Q1 at
the temperature t1 and gives up the amount of heat Q2 at the temperature
t2.

As a first application of the Carnot cycle, we shall complete the proof
of the equivalence of the Clausius and the Kelvin postulates by showing
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that if the Clausius postulate were not valid, Kelvin’s postulate would not
be valid either.

Let us assume, in contradiction to Clausius postulate, that it were pos-
sible to transfer a certain amount of heat Q2 from a source at the temper-
ature t1 to a source at a higher temperature t2 in such a way that no other
change in the state of the system occurred. With the aid of a Carnot cycle,
we could then absorb this amount of heat Q2 and produce an amount of
work L. Since the source at the temperature t2 receives and gives up the
same amount of heat, it suffers no final change. Thus, the process just de-
scribed would have as its only final result the transformation into work of
heat extracted from a source which is at the same temperature t1 through-
out. This is contrary to the Kelvin postulate.

3.3 The absolute thermodynamic temperature.

In the preceding section we described a reversible cyclic engine, the Carnot
cycle, which performs an amount of work L during each of its cycles by
absorbing a quantity of heat Q2 from a source at the temperature t2 and
surrendering a quantity of heat Q1 to a source at the lower temperature t1.
We shall say that such an engine works between the temperatures t1 and
t2.

Consider now an engine working between the temperatures t1 (lower)
and t2 (higher). Let L be the work performed by the engine during each
cycle, and let Q2 and Q1 be the amounts of heat per cycle absorbed at
the temperature t2 and expelled at the temperature t1, respectively. This
engine need not be a Carnot cycle; the only condition we impose on it is
that is be cyclic: at the end of the process it must return to its initial state.

We can easily show that if L > 0, that is, if the engine performs a posi-
tive amount of work, then Q2 > 0 and Q1 > 0.

Let us assume first that Q1 ≤ 0. This would mean that the engine
absorbed an amount of heat Q1 from the source t1 during the cycle. We
could then place the two sources in thermal contact and let heat flow spon-
taneously by conduction from the hotter source t2 to the colder source t1
until the latter had received exactly the same amount of heat as it had sur-
rendered to the engine during the cycle. Since the source t1 would thus
remain unaffected, and the engine would be back to its initial state, the
only final result of this process would be the transformation into work L
of heat absorbed from a single source which was initially at the same tem-
perature t2 throughout. Since this is in contradiction to Kelvin’s postulate,
we must have Q1 > 0.
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The proof that Q2 > 0 is now very simple. Since our engine reverts
to its initial state after the cycle, we have from the first law (see equation
(2.6)):

L = Q2 −Q1.

But L > 0 by assumption, and we have already proved that Q1 > 0; hence,
we must have Q2 > 0.

We consider now a second engine working between the same temper-
atures t1 and t2 for which L′, Q′2, and Q′1 are the quantities corresponding
to L, Q2, and Q1 for the first engine. We shall prove the following funda-
mental theorem:

(a) If the first engine is a reversible one,2 then,

Q2

Q1
≥ Q′2

Q′1
. (3.3)

(b) If the second engine also is reversible, then,

Q2

Q1
=

Q′2
Q′1

. (3.4)

In part (a) of the theorem, we make no assumption whatever about the
second engine; thus, it may or may not be reversible.

If we apply equation (2.6) (the special form of the first law for a cycle)
to out two engines, we see that the work performed by each engine during
a cycle must be equal to the difference between the heat received from the
source t2 and the heat given up at the source t1. Thus, we must have:

L = Q2 −Q1, (3.5)

and
L′ = Q′2 −Q′1. (3.6)

The ratio Q2/Q′2 can certainly be approximated by a rational number
to as high an accuracy as we may wish. We may therefore place

Q2

Q′2
=

N′

N
, (3.7)

where N and N′ are positive integers.

2By a “reversible” engine we mean one which operates around a reversible cycle.
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We now consider a process consisting of N′ cycles of the second engine
and N reverse cycles of the first engine. This is a permissible process, since
we have assume that the first engine is reversible. When operated in the
reverse sense, the first engine absorbs an amount of work L during each
reverse cycle, giving up an amount of work of heat Q2 to the source t2 and
absorbing an amount of heat Q1 from the source t1.

The total work performed by the two engines during the complex pro-
cess described above is:

Ltotal = N′L′ − NL.

The total amount of heat absorbed from the source t2 is:

Q2,total = N′Q′2 − NQ2;

and the total amount of heat given up to the source t1 is:

Q1,total = N′Q′1 − NQ1.

From (3.5) and (3.6) we obtain immediately:

Ltotal = Q2,total −Q1,total.

But from (3.7) we deduce that:

Q2,total = 0. (3.8)

Hence,
Ltotal = −Q1,total. (3.9)

Equation (3.8) states that the complete process produces no exchange
of heat at the high temperature t2; and equation (3.9) states that the heat
absorbed from the source t1 (equal to −Q1,total) is transformed into the
work Ltotal. Since the complete process is composed of several cycles of
each engine, both engine will come back to their initial states at the com-
pletion of the process. From this we see that Ltotal cannot be positive; for
if it were positive, the only final result of the complete process would be
the transformation into work, Ltotal, of heat, −Q1,total, absorbed from a
source which is at the temperature t1 throughout. But this would contra-
dict Kelvin’s postulate. Hence, we must have:

Ltotal ≤ 0.

Because of equation (3.9), this inequality is equivalent to

Q1,total ≥ 0;
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and remembering the expression for Q1,total, we obtain:

N′Q′1 ≥ NQ1.

If we eliminate N′ and N from this expression with the aid of equation
(3.7), we get, since all the quantities in (3.7) are positive,

Q2Q′1 ≥ Q′2Q1,

or
Q2

Q1
≥ Q′2

Q′1
,

which is identical with (3.3).
In order to complete the proof of our fundamental theorem, we must

show that if the second engine is reversible, then the equality sign holds,
as shown in equation (3.4).

If we take the second engine to be reversible, we have, on interchang-
ing the two engines and applying the inequality of part (a) of our theorem
to the new arrangement,

Q′2
Q′1
≥ Q2

Q1
.

Both this inequality and (3.3) must hold in the present case because both
engines are reversible. But these two inequalities are compatible only if
the equality sign holds.

We can restate the theorem just proved as follows:
If there are several cyclic heat engines, some of which are reversible, operating

around cycles between the same temperatures t1 and t2, all the reversible ones
have the same efficiency, while the nonreversible ones have efficiencies which can
never exceed the efficiency of the reversible engines.

We consider first two reversible engines. The fact that their efficien-
cies are equal follows immediately from (3.4) and the definition (3.2) of
efficiency.

If we have a reversible and a nonreversible engine, we obtain from the
inequality (3.3):

Q1

Q2
≤

Q′1
Q′2

.

Hence,

1− Q1

Q2
≥ 1−

Q′1
Q′2

.

Comparing this with equation (3.2), we see that the efficiency of the irre-
versible engine can never exceed that of the reversible one.
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One fundamental theorem shows us that the ratio Q2/Q1 has the same
value for all reversible engines that operate between the same tempera-
tures t1 and t2; that is, this ratio is independent of the special properties of
the engine, provided it is reversible: it depends only on the temperatures
t1 and t2. We may therefore write:

Q2

Q1
= f (t1, t2) , (3.10)

where f (t1, t2) is a universal function of the two temperatures t1 and t2.
We shall now prove that the function f (t1, t2) has the following prop-

erty:

f (t1, t2) =
f (t0, t2)

f (t0, t1)
, (3.11)

where t0, t1, and t2 are three arbitrary temperatures.
Let A1 and A2 be two reversible cyclic engines which work between

the temperatures t0 and t1 and t0 and t2, respectively. If A1 absorbs an
amount of heat Q1 at the temperature t1 and gives up an amount of heat
Q0 at the temperature t0 during a cycle, then from (3.10) we have:

Q1

Q0
= f (t0, t1) .

Similarly, if A2 absorbs an amount of heat Q2 at the temperature t2 and
gives up an amount of heat Q0 at the temperature t0 (we assume, for the
sake of simplicity, that the two engines are so chosen that they give up
equal amounts of heat at the temperature t0) during each cycle, then,

Q2

Q0
= f (t0, t2) .

Dividing this equation by the preceding one, we have:

Q2

Q1
=

f (t0, t2)

f (t0, t1)
. (3.12)

Consider now a complex process consisting of a direct cycle of the en-
gine A2 and a reverse cycle of the engine A1. This process is obviously a
reversible cycle, since it consists of two separate reversible cycles. During
the complex process no heat is exchanged at the temperature t0, because
the amount of heat Q0 which is surrendered by the engine A2 at the tem-
perature t0 is reabsorbed at the temperature by the engine A1 operating
in the reverse sense. However, at the temperature t2 an amount of heat
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Q2 is absorbed by A2, and at the temperature t1 an amount of heat Q1 is
expelled by the engine A1 during the cycle. We may therefore consider A1
and A2, when working together in the manner described above, as form-
ing a reversible cyclic engine which operates between the temperatures t1
and t2. For this engine we have, by definition of the function f :

Q2

Q1
= f (t1, t2) .

Comparing this equation with (3.12), we obtain (3.11). Q.E.D.
Since the temperature t0 in the above discussion is arbitrary, we may

keep it constant in all our equations; from this it follows that we may con-
sider f (t0, t) as being a function of the temperature t only; we therefore
place

K f (t0, t) = θ (t) , (3.13)

where K is an arbitrary constant.
Making use of (3.13), we can now put (3.11) in the form:

Q2

Q1
= f (t1, t2) =

θ (t2)

θ (t1)
. (3.14)

This equation tells us that f (t1, t2) is equal to the ratio of a function of the
argument t2 to the same function of the argument t1.

Since we have used an empirical temperature t, it is obviously impos-
sible to determine the analytical form of the function θ (t). Since, however,
our scale of temperatures in an arbitrary one, we can conveniently intro-
duce a new temperature scale, using θ itself as the temperature, instead of
t.

It should be noticed, however, that θ (t) is not quite uniquely defined;
it can be seen from (3.14) or (3.13) that θ (t) is indeterminate to the extent of
an arbitrary multiplicative constant factor. We are therefore free to choose
the unit of the new temperature scale θ in any way we see fit. The usual
choice of this unit is made by placing the difference between the boiling
temperature and the freezing temperature of water at one atmosphere of
pressure equal to 100 degrees.

The temperature scale which we have just defined is called the absolute
thermodynamic scale of temperature. If has the advantage of being indepen-
dent of the special properties of any thermometric substance; furthermore,
all the thermodynamic laws take on a simple form when this scale of tem-
perature is used.

We shall now show that the absolute thermodynamic temperature θ coin-
cides with the absolute temperature T introduced in Section 1.2 with the aid of a
gas thermometer.
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We consider a Carnot cycle performed by an ideal gas (for simplicity,
we take one mole of gas). Let T1 and T2 be the temperatures (as measured
by a gas thermometer) of the two isothermals of the Carnot cycle. (See
Figure 3.2) We first calculate the amount of heat Q2 absorbed at the tem-
perature T2 during the isothermal expansion AB. Applying the first law,
equation (2.5), to the transformation AB, and indicating by the subscripts
A and B quantities that belong to the states A and B, we have:

UB −UA + LAB = Q2,

where LAB is the work performed during the isothermal expansion and
can be calculated with the aid of equation (1.10):

LAB = RT2 log
VB

VA
.

We now make use of the fact that the energy of an ideal gas is a function
of T only (see Section 2.3). Thus, since A and B lie on the same isothermal,
we must have UA = UB, so that

Q2 = LAB = RT2 ln
VB

VA
.

In a similar fashion, we can prove that the amount of heat given up
at the source T1 during the isothermal compression represented by the
segment DC is:

Q1 = RT1 ln
VD

VC
.

Since the two points A and C lie on an adiabatic curve, we have, from
(2.28):

T1VK−1
C = T2VK−1

A ;

and similarly,
T1VK−1

D = T2VK−1
B .

Dividing this equation by the preceding one and extracting the (K − 1)th
root, we get:

VB

VA
=

VD

VC
.

From this equation and the expressions for Q2 and Q1, we obtain:

Q2

Q1
=

T2

T1
.
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This equation shows us that the ratio Q2/Q1 is equal to the ratio, T2/T1,
of the temperatures of the sources when these temperatures are expressed
on the gas thermometer scale of temperature. But from (3.14) it follows
that Q2/Q1 is also equal to the ratio of the temperatures of the sources
when these temperatures are expressed in units of the absolute thermo-
dynamic scale. Hence, the ratio of the two temperatures on the absolute
thermodynamic scale is equal to that ratio on the gas thermometer scale;
that is the two temperature scales are proportional. Since the units of tem-
perature for both scales have been chosen equal, we conclude that the two
scales themselves are equal, that is,

θ = T. (3.15)

Since θ and T are equal, we need no longer use two different letters to
indicate them; henceforth, we shall always use the letter T to denote the
absolute thermodynamic temperatures.

Using T in place of θ, we have from (3.14) for a reversible cycle between
the temperatures T1 and T2:

Q2

Q1
=

T2

T1
. (3.16)

And the efficiency (3.2) of a reversible engine becomes:

η = 1− T1

T2
=

T2 − T1

T2
. (3.17)

3.4 Thermal engines.

We have already proved that no engine working between two tempera-
tures can have a higher efficiency than a reversible engine working be-
tween the same two temperatures. Thus, (3.17) represents the highest pos-
sible efficiency that an engine working between the temperatures T1 and
T2 can have.

In most thermal engines the low temperature T1 is the temperature of
the environment, and is thus uncontrollable. It is therefore thermodynam-
ically desirable to have the temperature T2 as high as possible. Of course,
we must always bear in mind the fact that the actual efficiency is generally
considerably lower than the maximum efficiency (3.17) because all ther-
mal engines are far from being reversible.

A Carnot cycle operated in the reverse sense can be used to extract an
amount of heat Q1 from a source at the lower temperature T1 by absorbing
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an amount of work L. From (3.1) and (3.16) we easily deduce that:

Q1 = L
(

T1

T2 − T1

)
. (3.18)

On this principle we can construct a refrigerating machine using the
temperature of the environment as the high temperature T2. A Carnot
cycle operated in the reverse sense could thus be used to extract the heat
Q1 from a body cooled to a temperature, T1, lower than the temperature
of the environment, T2. It is evident from (3.18) that the amount of work
needed to extract a given quantity of heat Q1 from a body which is at
the temperature T1 becomes larger and larger as the temperature T1 of the
body decreases.

As in the case of an ordinary thermal engine, the efficiency of a refriger-
ating machine is considerably lower than the thermodynamical efficiency
(3.18) because irreversible processes are always involved in refrigerating
devices.

Problems

1. One mole of monatomic gas performs a Carnot cycle between the
temperatures 400 K K and 300 K. On the upper isothermal transfor-
mation, the initial volume is 1 liter and the final volume 5 liters. To
find the work performed during a cycle, and the amounts of heat
exchanged with the two sources.

2. What is the maximum efficiency of a thermal engine working be-
tween an upper temperature of 400◦C and a lower temperature of
18◦C?

3. Find the minimum amount of work needed to extract one calorie of
heat from a body at the temperature of 0◦F, when the temperature of
the environment is 100◦F.
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Chapter 4

The Entropy

4.1 Some properties of cycles.

Let us consider a system S that undergoes a cyclic transformation. We
suppose that during the cycle the system receives heat from or surrenders
heat to a set of sources having the temperatures T1, T2, ..., Tn. Let the
amounts of heat exchanged between the system and these sources be Q1,
Q2, ..., Qn, respectively; we take the Q’s positive if they represent heat
received by the system and negative in the other case.

We shall now prove that:

n

∑
i=1

Qi

Ti
≤ 0, (4.1)

and that the equality sign hold in (4.1) if the cycle is reversible.
In order to prove (4.1) we introduce, besides the n sources listed above,

another source of heat at an arbitrary temperature T0, and also n reversible
cyclic engines (we shall take n Carnot cycles, C1, C2, ..., Cn) operating be-
tween the temperatures T1, T2, ..., Tn, respectively, and the temperature
T0. We shall choose the ith Carnot cycle, Ci, which operates between the
temperatures Ti and T0, to be of such a size that is surrenders at the temper-
ature Ti the quantity of heat Qi, that is, an amount equal to that absorbed
by the system S at the temperature Ti.

According to (3.16), the amount of heat absorbed by Ci from the source
T0 is:

Qi,0 =
T0

Ti
Qi. (4.2)

We now consider a complex cycle consisting of one cycle of the system
S and one cycle of each of the Carnot cycles C1, C2, ..., Cn. The net exchange
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of heat at each of the sources T1, T2, ..., Tn during the complex cycle is
zero; the source Ti surrenders an amount of heat Qi to the system S, but
it receives the same amount of heat from the cycle Ci. The source T0, on
the other hand, loses an amount of heat equal to the sum of the amounts
(given by (4.2)) absorbed by the Carnot cycles C1, C2, ..., Cn. Thus, the
source T0 surrenders altogether an amount of heat equal to

Q0 =
n

∑
i=1

Qi,0 = T0

n

∑
i=1

Qi

Ti
. (4.3)

Hence, the net result of our complex cycle is that the system composed
of S and C1, C2, ..., Cn receives an amount of heat Q0 from the source
T0. But we have already seen taht in a cyclic transformation the work
performed is equal to the total heat received by the system. Thus, since S,
C1, C2, ..., Cn return to their initial states at the end of the complex cycle, the
only final result of the complex cycle is to transform into work an amount
of heat received from a source at a uniform temperature T0. If Q0 were
positive, this would be in contradiction to Kelvin’s postulate. It therefore
follows that Q0 ≤ 0, or, from (4.3),

n

∑
i=1

Qi

Ti
≤ 0,

which is identical with (4.1).
If the cycle performed by S is reversible, we can describe it in the op-

posite direction, in which case all the Qi will change sign. Applying (4.1)
to the reverse cycle, we obtain:

n

∑
i=1

(
−Qi

Ti

)
≤ 0,

or
n

∑
i=1

Qi

Ti
≥ 0.

Thus, if the cycle is reversible, this inequality, as well as (4.1), must be
satisfied. This is possible only if the equality sign holds. For a reversible
cycle, therefore, we must have:

n

∑
i=1

Qi

Ti
= 0. (4.4)

This completes the proof of our theorem.
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In establishing (4.1) and (4.4), we assume that the system exchanges
heat with a finite number of sources T1, T2, ..., Tn. It is important, however,
to consider the case for which the system exchanges heat with a continu-
ous distribution of sources. In that case, the sum in (4.1) and (4.4) must be
replaced by integrals extended over the entire cycle.

Denoting by
∮

the integral extended over a cycle and by dQ the in-
finitesimal amount of heat received by the system from a source at the
temperature T, we have: ∮ dQ

T
≤ 0, (4.5)

which is valid for all cycles, and∮ dQ
T

= 0, (4.6)

which is valid only for reversible cycles.1

4.2 The entropy.

The property of a reversible cycle which is expressed by (4.6) can also be
stated in the following form. Let A and B be two equilibrium states of
a system S. Consider a reversible transformation which takes the system
from its initial state A to the final state B. In most cases many reversible
transformation from A to B will be possible. For example, if the state of
the system can be represented on a (V, p) diagram, any continuous curve
connecting the two points A and B (representing the initial and final states
of the system) corresponds to a possible reversible transformation from A
to B. In Figure 4.2, three such transformations are shown.

Consider now the integral: ∫ B

A

dQ
T

1In order to avoid misunderstandings as to the meaning of (4.5) and (4.6), we must
point out that T represents the temperature of the source which surrenders the quantity
of heat dQ, and is not necessarily equal to the temperature T′ of the system (or of part of
the system) which receives the heat dQ. Indeed, if the cycle is irreversible (relation (4.5)),
T′ ≤ T when dQ is positive, because heat cannot flow from a colder body to a hotter bod;
and when dQ is negative, T′ ≥ T. If the cycle is reversible, however (equation (4.6)), we
must always have T′ = T, because an exchange of heat between two bodies at different
temperatures is not reversible. In (4.6) we may therefore take T to be the temperature of
the source and also the temperature of the part of the system that receives the heat dQ.
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Figure 4.1: Different transformations from A to B.

extended over a reversible transformation from A to B (dQ is the amount
of heat absorbed reversible by the system at the temperature T). We shall
prove that the above integral is the same for all reversible transformations from
A to B; that is, that the value of the integral for a reversible transformation de-
pends only on the extreme states A and B of the transformation and not on the
transformation itself.

Figure 4.2: Two paths, I and II, from A to B.

In order to prove this theorem, we must show that if I and II are two
reversible tansformations from A to B (in Figure 4.2, the states are repre-
sented as points and the transformations as lines merely as a visual aid to
the proof), then, (∫ B

A

dQ
T

)
I
=

(∫ B

A

dQ
T

)
II

, (4.7)

where the two integrals are taken along the paths I and II, respectively.
Consider the cyclic transformation A I B II A. This is a reversible cycle,

since it is made up of two reversible transformations. We may therefore
apply (4.6) to it, so that ∮

AIBIIA

dQ
T

= 0.
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This integral can be split into the sum of two integrals:(∫ B

A

dQ
T

)
I
+

(∫ B

A

dQ
T

)
II
= 0.

The second integral in this expression is equal to −
(∫ B

A

dQ
T

)
II

, because

in the transformation from B to A along II, dQ takes on the same values,
except for sign, as it does in the transformation from A to B along II. Hence
we obtain (4.7), and thus prove our theorem.

The property expressed by (4.7) enables us to define a new function of
the state of a system. This function, which is called the entropy and is of
utmost importance in thermodynamics, is defined in the following way:

We arbitrarily choose a certain equilibrium state O of our system and
call it the standard state. Let A be some other equilibrium state, and con-
sider the integral:

S (A) =
∫ A

O

dQ
T

(4.8)

taken over a reversible transformation. We have already seen that such
an integral depends only on the states O and A and not on the particular
reversible transformation from O to A. Since the standard state O is fixed,
however, we may say that (4.8) is a function of the state A only. We shall
call this function the entropy of the state A.2

Consider now two equilibrium states A and B, and let S (A) and S (B),
respectively, be the entropies of these states. We shall show that:

S (B)− S (A) =
∫ B

A

dQ
T

, (4.9)

where the integral is taken over a reversible transformation from state A
to state B.

2The necessity of restricting this definition of the entropy to equilibrium states only
arises from the fact that the transformation from O and A must be reversible; that is, is
must be a succession of equilibrium states. Hence it follows from continuity considera-
tions that the initial and final states O and A must also be equilibrium states.

In many cases, however, it is possible to define the entropy even for non-equilibrium
states. Let us consider, for example, a system composed of several homogeneous parts at
different temperatures and pressures. Let each part, however, have a uniform tempera-
ture and pressure. If the different parts are in direct contact with each other, the system
will evidently not be in equilibrium, since heat will flow from the hotter to the colder
parts, and the differences of pressure will give rise to motion. If, however, we enclose
each part in a thermally insulating rigid container, our system will be in equilibrium, and
we shall be able to determine its entropy.
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In order to prove this, we note that the integral on the right-hand side
of (4.9) has the same value for all reversible transformations from A to
B. We may therefore choose a particular transformation consisting of two
successive reversible transformations: first a reversible transformation from
A to the standard state O and then a reversible transformation from O to
B. Thus, the integral in (4.9) can be written as the sum of two integrals:∫ B

A

dQ
T

=
∫ O

A

dQ
T

+
∫ B

O

dQ
T

. (4.10)

We have by the definition (4.8):

S (B) =
∫ B

0

dQ
T

,

since the transformation from O to B is reversible. We have further:∫ O

A

dQ
T

= −
∫ A

O

dQ
T

= −S (A) .

Substituting these two values for the integrals on the right-hand side of
(4.10), we obtain (4.9). Q.E.D.

The definition (4.8) of the entropy requires the arbitrary choice of a
standard state O. We can easily prove that if, instead of O, we choose a dif-
ferent standard state O’, then the new value, S′ (A), which we find for the
entropy of the state A differs from the old one, S (A), only by an additive
constant.

If we take O’ as the new standard state, we have, by definition,

S′ (A) =
∫ A

O′

dQ
T

,

where the integral is extended over a reversible transformation from O’ to
A. By applying (4.9) to this integral, we find that

S′ (A) = S (A)− S
(
O′
)

,

or
S (A)− S′ (A) = S

(
O′
)

. (4.11)

Since the new standard state O’ is fixed, however, S (O′) is a constant (that
is, it is independent of the variable state A). Thus (4.11) shows that the
difference between the entropies of state A obtained with two different
standard states, O and O’, is a constant.
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The entropy is thus defined except for an additive constant. This in-
determinacy will not trouble us when we are dealing with entropy differ-
ences; in several problems, however, the additive constant in the entropy
plays an important role. We shall see later how the third law of thermo-
dynamics completes the definition of the entropy and also enables us to
determine the entropy constant (see Chapter 9).

Both from (4.8) and from (4.9) it follows, if we consider an infinitesimal
reversible transformation during which the entropy varies by an amount
dS and the system receives an amount of heat dQ at the temperature T,
that

dS =
dQ
T

. (4.12)

That is, the variation in entropy during an infinitesimal reversible transfor-
mation is obtained by dividing the amount of heat absorbed by the system
by the temperature of the system.

The entropy of a system composed of several parts is very often equal
to the sum of the entropies of all the several parts. This is true if the energy
of the system is the sum of the energies of all the parts and if the work per-
formed by the system during a transformation is equal to the sum of the
amounts of work performed by all the parts. Notice that these conditions
are not quite obvious and that in some cases they may not be fulfilled.
Thus, for example, in the case of a system composed of two homogeneous
substances, it will be possible to express the energy as the sum of the ener-
gies of the sum substances only if we can neglect the surface energy of the
two substances where they are in constant. The surface energy can gener-
ally be neglected only if the two substances are not very finely subdivided;
otherwise, it can play a considerable role.

Let us assume for the sake of simplicity that our system s is composed
of only the two partial system s1 and s2. We suppose that the energy U of
s is equal to the sum of the energies U1 and U2 of s1 and s2:

U = U1 + U2;

and that the work L performed by s during a transformation is equal to
the sum of L1 and L2, that is, to the sum of the work performed by s1 and
s2, respectively:

L = L1 + L2.

From these assumptions and from (2.5) it follows that the heat Q re-
ceived by the system s during a transformation can be written as the sum,

Q = Q1 + Q2,
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of the amounts of heat received by the two parts. This enables us to split
the integral (4.8), which defines the entropy, into the sum:

S (A) =
∫ A

O

dQ
T

=
∫ A

O

dQ1

T
+
∫ A

O

dQ2

T
,

of two integrals which define the entropies of the two partial systems s1
and s2.3

When the conditions for its validity are fulfilled, this additivity of en-
tropy enables us in several cases to define the entropy of a system even
though the system is not in a state of equilibrium. This is possible if we
can divide the given system into a number of parts each of which alone is
in a state of equilibrium. We can then define the entropy of each of these
parts and, by definition, place the entropy of the total system equal to the
sum of the entropies of all the parts.4

4.3 Some further properties of the entropy.

Consider two states A and B of a system. We have from (4.9):

S (B)− S (A) =
∫ B

A

dQ
T

,

provided the integral is taken over a reversible transformation from A to
B. If, however, the integral is taken from A to B over an irreversible trans-
formation, the preceding equation no longer holds. We shall show in that
case that we have, instead, the inequality

S (B)− S (A) ≥
∫ B

A

dQ
T

. (4.13)

In order to show this, we take our system from S to B along an irre-
versible transformation, I, and back to A again along a reversible trans-
formation R (see Figure 4.3). I and R together form an irreversible cycle
A I B R A. If we apply (4.5) to this irreversible cycle, we obtain:

0 ≥
∮

AIBRA

dQ
T

=

(∫ B

A

dQ
T

)
I
+

(∫ A

B

dQ
T

)
R

.

3It should be noticed that if the standard state O and the state A of the total system
are given, the corresponding states of the two parts that compose the total system are
known. These states of the two partial systems have been indicated by the same letters O
and A.

4It can easily be proved that all the properties already shown to apply to the entropy
apply also to this generalized definition.
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Figure 4.3: A reversible path R from A to B and an irreversible path I from
B to A.

Since (4.9) can be applied to the reversible transformation, R, from B to
A, we have: (∫ A

B

dQ
T

)
R
= S (A)− S (B) .

Substituting this in the preceding inequality, we obtain:

0 ≥
(∫ B

A

dQ
T

)
I
− [S (B)− S (A)] ,

so that, for the general case of any type of transformation from A to B, we
have: ∫ B

A

dQ
T
≤ S (B)− S (A) ,

which is identical with (4.13). Q.E.D.
For a completely isolated system, (4.13) takes on a very simple form.

Since for such a system dQ = 0, we now find that:

S (B) ≥ S (A) ; (4.14)

that is, for any transformation occurring in an isolated system, the entropy of the
final state can never be less than that of the initial state. If the transformation
is reversible, the equality sign holds in (4.14), and the system suffers no
change in entropy.

It should be clearly understood that the result (4.14) applies only to
isolated systems. Thus, it is possible with the aid of an external system to
reduce the entropy of a body. The entropy of both systems taken together,
however, cannot decrease.

When an isolated system is in the state of maximum entropy consistent
with its energy, it cannot undergo any further transformation because any
transformation would result in a decrease of entropy. Thus, the state of
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maximum entropy is the most stable state for an isolated system. The fact that
all spontaneous transformations in an isolated system proceed in such a
direction as to increase the entropy can be conveniently illustrated by two
simple examples.

As the first example, we consider the exchange of heat by thermal con-
duction between two parts, A1 and A2, of a system. Let T1 and T2 be the
temperatures of these two parts, respectively, and let T1 < T2. Since heat
flows by conduction from the hotter body to the colder body, the body A2
gives up a quantity of heat Q which is absorbed by the body A1. Thus, the
entropy of A1 changes by an amount Q/T1, while that of A2 changes by
the amount −Q/T2. The total variation in entropy of the complete system
is, accordingly,

Q
T1
− Q

T2
.

Since T1 < T2, this variation is obviously positive, so that the entropy of
the entire system has been increased.

A second example, we consider the production of heat by friction. This
irreversible process also results in an increase of entropy. The part of the
system that is heated by friction receives a positive amount of heat and
its entropy increases. Since the heat comes from work and not from an-
other part of the system, this increase of entropy is not compensated by a
decrease of entropy in another part of the system.

The fact that the entropy of an isolated system can never decrease dur-
ing any transformation has a very clear interpretation from the statistical
point of view. Boltzmann has proved that the entropy of a given state of
a thermodynamical system is connected by a simple relationship to the
probability of the state.

We have already emphasized the difference between the dynamical
and thermodynamical concepts of the state of a system. To define the dy-
namical state, it is necessary to have the detailed knowledge of the posi-
tion and motion of all the molecules that compose the system. The ther-
modynamical state, on the other hand, is defined by giving only a small
number of parameters, such as the temperature, pressure, and so forth.
It follows, therefore, that to the same thermodynamical state there corre-
sponds a large number of dynamical states. In statistical mechanics, crite-
ria are given for assigning to a given thermodynamical state the number
π of corresponding dynamical states. (See also Section 8.1) This number
π is usually called the probability of the given thermodynamical state, al-
though, strictly speaking, it is only proportional to the probability in the
usual sense. The latter can be obtained by dividing π by the total number
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of possible dynamical states.
We shall now assume, in accordance with statistical considerations,

that in an isolated system only those spontaneous transformations occur
which take the system to states of higher probability, so that the most sta-
ble state of such a system will be the state of highest probability consistent
with the given total energy of the system.

We see that this assumption establishes a parallelism between the prop-
erties of the probability π and the entropy S of our system, and thus sug-
gests the existence of a functional relationship between them. Such a rela-
tionship was actually established by Boltzmann, who proved that

S = k ln π, (4.15)

where k is a constant called the Boltzmann Constant and is equal to the ratio,

R
A

, (4.16)

of the gas constant R to Avogadro’s number A.
Without giving a proof of (4.15), we can prove, assuming the existence

of a functional relationship between S and π,

S = f (π) (4.17)

that the entropy is proportional to the logarithm of the probability.
Consider a system composed of two parts, and let S1 and S2 be the

entropies and π1 and π2 are probabilities of the states of these parts. We
have from (4.17):

S1 = f (π1) ; S2 = f (π2) .

But the entropy of the total system is the sum of the two entropies:

S = S1 + S2;

and the probability of the total system is the product of the two probabili-
ties,

π = π1π2.

From these equations and from (4.17) we obtain the following:

f (π1π2) = f (π1) + f (π2) .

The function f must accordingly obey the functional equation:

f (xy) = f (x) + f (y) . (4.18)
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This property of f enables us to determine its form. Since (4.18) is true
for all values of x and y, we may take y = 1+ ε, where ε is an infinitesimal
of the first order. Then,

f (x + xε) = f (x) + f (1 + ε) .

Expanding both sides by Taylor’s theorem and neglecting all terms of an
order higher than the first, we have:

f (x) + xε f ′ (x) = f (x) + f (1) + ε f ′ (1) .

For ε = 0, we find f (1) = 0. Hence,

x f ′ (x) = f ′ (1) = k,

where k represents a constant, or:

f ′ (x) =
k
x

.

Integrating, we obtain:

f (x) = k ln x + const.

Remembering (4.17), we finally have:

S = k ln π + const.

We can place the constant of integration equal to zero. This is permissible
because the entropy is indeterminate to the extent of an additive constant.
We thus finally obtain (4.15).

Of course, it should be clearly understood that this constitutes no proof
of the Boltzmann equation (4.15), since we have not demonstrated that a
functional relationship between S and π exists, but have merely made it
appear plausible.

4.4 The entropy of systems whose states can be
represented on a (V,p) diagram.

For these systems the state is defined by any two of the three variables, p,
V, and T. If we choose T and V as independent variables (the state vari-
ables), the heat dQ received by the system during an infinitesimal trans-
formation as a result of which T and V change by amounts dT and dV is
given by the differential expression (2.12)

dQ =

(
∂U
∂T

)
V

dT +

[(
∂U
∂V

)
T
+ p

]
dV. (4.19)
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From this and (4.12) we obtain:

dS =
dQ
T

=
1
T

(
∂U
∂T

)
V

dT +
1
T

[(
∂U
∂V

)
T
+ p

]
dV. (4.20)

These two differential expressions for dQ and dS differ in one very im-
portant respect. We know from the general theory that there exists a func-
tion S of the state of the system. In our case, S will therefore be a function
of the variables T and V, which define the state of the system:

S = S (T, V) . (4.21)

The differential expression on the right-hand side of (4.20) is therefore
the differential of a function of the two independent variables T and V.

In general, a differential expression of two independent variables x and
y, such as:

dz = M (x, y) dx + N (x, y) dy, (4.22)

is said to be a perfect differential if it is the differential of a function of x
and y. We may accordingly say that (4.20) is a perfect differential of the
independent variables T and V.

It is well known that if dz is a perfect differential, then M and N must
satisfy the following equation:

∂M (x, y)
∂y

=
∂N (x, y)

∂x
. (4.23)

When this condition is fulfilled, it is possible to integrate (4.22) and thus
find a function which satisfies that equation. Otherwise, no such function
exists, and dz cannot be considered as being the differential of some func-
tion of x and y; then, the integral of (4.22) along a path connecting two
points on the (x, y) plane depends not only on these two points (the limits
of the integral) but also on the path joining them.

As regard the two differential expressions (4.19) and (4.20), we have al-
ready noticed that dS is a perfect differential. If we consider two states A
and B on the (V, p) diagram connected by two different reversible trans-
formations I and II (see Figure 4.4), and integrate dS along the two paths
I and II, we get the same result in both cases, namely, S (B) − S (A). If,
on the other hand, we integrate dQ along these two different paths, we
obtain two results, Q1 and Q2, which in general are not equal. This can be
easily verified by applying the first law of thermodynamics, (2.5), to the
two transformations I and II. On doing this, we find that:

QI = U (B)−U (A) + LI
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Figure 4.4: Two different paths, I and II, from state A to B on a (V, p)
diagram.

QII = U (B)−U (A) + LII.

Taking the difference of these two expressions, we obtain:

QI −QII = LI − LII.

LI and LII are given by the areas AIBB′A′A and AIIBB′A′A, respectively.
Since the difference between these two areas is equal to the area AIBIIA, it
follows that LI − LII and, therefore, QI −QII also, are, in general, different
from zero. Thus, (4.19) is not a perfect differential, and no function Q of
the state of the system can be found. It should be noticed that if a heat
fluid really existed, as had been assumed before modern thermodynamics
was developed, a function Q of the state of the system could be found.

Let us consider, as an example of the preceding considerations, the ex-
pressions for dQ and dS for one mole of an ideal gas. From (2.20) we have:

dQ = CVdT + pdV,

or, on eliminating p with the aid of the equation of state, pV = RT,

dQ = CVdT +
RT
V

dV. (4.24)

This expression is not a perfect differential, and one can immediately ver-
ify that the condition (4.23) is not fulfilled.

From (4.24) and (4.12) we obtain:

dS =
dQ
T

=
CV

T
dT +

R
V

dV. (4.25)

Since the condition (4.23) is now fulfilled, this expression is a perfect dif-
ferential.
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On integrating (4.25), we obtain:

S = CV ln T + R ln V + a, (4.26)

where a is a constant of integration. This additive constant remains un-
determined in accordance with the definition (4.8) of the entropy. (See,
however, Section 8.3.)

We can transform the expression (4.26) for the entropy of one mole of
an ideal gas by introducing in place of V its value V = RT/p obtained
from the equation of state. Remembering (2.23), we obtain:

S = Cp ln T − R ln p + a + R ln R. (4.27)

Returning to the general case of any substance whose state can be de-
fined by the variables T and V, we obtain the expression (4.20) for the
differential of the entropy. The condition (4.23), when applied to this equa-
tion, gives:

∂

∂V

(
1
T

∂U
∂T

)
=

∂

∂T

[
1
T

(
∂U
∂V

+ p
)]

,

where we have omitted the subscripts V and T because in all these for-
mulae we shall always use V and T as the independent variables. If we
perform the partial differentiation indicated in the preceding equation and
collect terms, we obtain the important result:(

∂U
∂V

)
T
= T

(
∂p
∂T

)
V
− p. (4.28)

As an application of (4.28), we shall use it to show that the energy U
of a substance which obeys the equation of state pV = RT is a function
of the temperature only and does not depend on the volume. We have al-
ready seen that this was experimentally verified by Joule; it is interesting,
however, to obtain this result as a direct consequence of the equation of
state.

Substituting the expressions p = RT/V in (4.28), we find that:(
∂U
∂V

)
T
= T

∂

∂T

(
RT
V

)
− RT

V
= 0,

which proves that U5 does not depend on V.
5Notice that this result is not quite independent of the Joule experiment described in

Section 2.3. Indeed, the proof of the identity between the gas thermometer temperature
T and the thermodynamic temperature θ given in Section 3.3 was based on the results of
the Joule experiment.
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If we choose T, p or p, V instead of T, V as the independent variables,
we obtain two other equations which are substantially equivalent to (4.28).
Thus, if we take T and p as the state variables, dQ is given by (2.13). Since
dS = dQ/T is a perfect differential, we easily obtain, with the aid of (4.23):(

∂U
∂p

)
T
= −p

(
∂V
∂p

)
T
− T

(
∂V
∂T

)
p

(4.29)

Similarly, taking p and V as the independent variables, we obtain from
(2.14) and (4.23):

T =

[(
∂U
∂V

)
p
+ p

](
∂T
∂p

)
V
−
(

∂U
∂p

)
V

(
∂T
∂V

)
p

. (4.30)

4.5 The Clapeyron equation.

In this section we shall apply equation (4.28) to a saturated vapor, that is,
to a system composed of a liquid and its vapor in equilibrium.

We consider a liquid enclosed in a cylinder with a piston at one end.
The space between the surface of the liquid and the face of the piston will
be filled with saturated vapor at a pressure p which depends only on the
temperature of the vapor and not on its volume.

Figure 4.5: Isotherms of a substance on a (V, p) diagram.

The isothermals for this liquid-vapor system in a (V, p) representation
are obtained as follows: Keeping the temperature constant, we increase
the volume of the vapor by raising the piston. As a result of this, some
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of the liquid will evaporate in order to keep the pressure of the vapor un-
changed. Thus, as long as enough liquid is left, and increase in the volume
of the system leaves the pressure unchanged. Therefore, the isothermal for
a mixture of a liquid and its vapor in equilibrium is a line of constant pres-
sure, and hence parallel to the V-axis, as shown in the region within the
dotted line in Figure 4.5.

When the volume has been increased to such an extent that all the liq-
uid has evaporated, a further increase in volume will result, as shown in
Figure 4.5, in a decrease in pressure just as in the case of a gas.

If we now compress our system, still keeping the temperature constant,
the pressure will increase until it becomes equal to the pressure of the sat-
urated vapor for the given temperature. At this point, a further decrease
in volume does not produce an increase in the pressure; instead, some of
the vapor condenses and the pressure remains unchanged (the horizontal
stretch of the isothermal).

When the volume has been reduced to such an extent that the sub-
stance is completely in the liquid state, a further compression produces a
very large increase in pressure, because the liquids have a very low com-
pressibility. This part of the isothermal will therefore be very steep, as
shown in the figure.

In Figure 4.5 several isothermals of the kind just discussed have been
drawn for various values of the temperature (lines a, b, c, and d). If can be
seen from the figure that the length of the horizontal stretch of the isother-
mal (that is, the volume interval for which the liquid and vapor can coexist
in equilibrium at a given temperature) decreases with increasing temper-
ature until for the isothermal ee it reduces to an infinitesimal length (that
is, to a horizontal point of inflection). This isothermal ee is called the crit-
ical isothermal, and its temperature Tc is called the critical temperature. The
volume Vc and the pressure pc corresponding to the horizontal point of
inflection are called the critical volume and the critical pressure; the state
corresponding to Vc, pc, Tc is called critical state (or critical point) of the
system.

The isothermals for temperatures above the critical temperature are
monotonic decreasing functions which have no discontinuities. For very
large temperatures, they go over into equilateral hyperbolae, because the
properties of the substance in the range of very high temperatures become
more and more similar to those of an ideal gas.

The dotted line in the figure and the critical isothermal ee divide the
(V, p) plane into four sections: the section marked L, which corresponds to
the liquid state; the section marked L, V, which corresponds to the mixture
of the liquid and the saturated vapor; the section V which corresponds to
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the nonsaturated vapor; and the section G, which corresponds to the gas.
We shall now apply (4.28) to the liquid-vapor system represented by

region L, V of the (V, p) plane in Figure 4.5. In this region the pressure and
the densities of the liquid and the vapor depend only on the temperature.
Let v1 and v2 be the specific volumes (that is, the volumes per unit mass, or
the inverse of the densities) of the liquid and the vapor, respectively; and
let u1 and u2 be their specific energies (that is, the energies per unit mass).
The quantities p, v1, v2, u1, and u2 are all functions of the temperature only.
If m is the total mass of the substance, and m1 and m2 are the masses of the
liquid and vapor parts, respectively, then

m = m1 + m2.

Similarly, the total volume and the total energy of the system are:

V = m1v1 (T) + m2v2 (T)

U = m1u1 (T) + m2u2 (T) .

We now consider an isothermal transformation of our system which
causes an amount dm of the substance to pass from the liquid state to the
vapor state, and which results in a change dV of the total volume and a
change dU of the total energy of the system. At the end of the transforma-
tion there will then be present (m1 − dm) grams of liquid and (m2 + dm)
grams of vapor, so that the total volume will be equal to:

V + dV = (m1 − dm) v1 (T) + (m2 + dm) v2 (T)
= V + {v2 (T)− v1 (T)} dm,

or
dV = {v2 (T)− v1 (T)} dm. (4.31)

Similarly, the total energy will change by an amount

dU = {u2 (T)− u1 (T)} dm. (4.32)

From the first law, equation (2.11), we have:

dQ = dU + pdV
= dm {u2 − u1 + p (v2 − v1)} ,

or
dQ
dm

= u2 − u1 + p (v2 − v1) = λ. (4.33)
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Equation (4.33) is the expression for the amount of heat that is needed
to vaporize one gram of liquid at constant temperature; it is called the la-
tent heat of vaporization, λ. The value of λ is different for different liquids,
and it also depends on the temperature. For water at the boiling tempera-
ture and standard pressure, λ = 540 cal/gm.

Since (4.31) and (4.32) refer to isothermal transformations, the ratio
dU/dV gives us: (

∂U
∂V

)
T
=

u2 (T)− u1 (T)
v2 (T)− v1 (T)

,

or, using (4.33): (
∂U
∂V

)
T
=

λ

v2 − v1
− p.

If we compare this equation with (4.28) and write dp/dT instead of(
∂p
∂T

)
V

, which we may do because the pressure is a function of T only for

our system, we find that:

dp
dT

=
λ

T (v2 − v1)
. (4.34)

This is called Clapeyron’s equation.
As an example of the application of Clapeyron’s equation, we shall

calculate the ratio dp/dT for water vapor at the boiling temperature and
at standard pressure. We have:

λ = 540 cal/gm = 2260× 107 ergs/gm;

v2 = 1677; v1 = 1.043; T = 373.1.

Substituting these values in (4.34), we get:

dp
dT

= 3.62× 104 dynes cm−2 K−1 = 2.7 cmHg K−1.

An approximate value for dp/dT can be obtained from Clapeyron’s
equation by assuming that v1 is negligible as compared to v2, and then
calculating v2 by assuming that the vapor satisfies the equation of state of
an ideal gas.

For one gram of vapor, we have, from equation (1.6):

pv2 =
R
M

T, (4.35)
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where M is the molecular weight of the vapor. Equation (4.34) now be-
comes:

dp
dT

=
λM
RT2 p, (4.36)

or
d ln p

dT
=

λM
RT2 . (4.37)

For water vapor at the boiling temperature, this formula gives dp/dT =
3.56 × 104; this is in very good agreement with the value 3.62 × 104 ob-
tained from the exact calculation.

If the heat of vaporization λ is assumed to be constant over a wide
range of temperatures, we can integrate (4.37) and obtain:

ln p = −λM
RT

+ constant,

or
p = const. e−λM/RT (4.38)

This formula shows in a rough way how the vapor pressure depends
on the temperature.

We have derived Clapeyron’s equation for a liquid-vapor system, but
the same formula can be applied to any change of the state of a substance.
As an example of this, we shall apply Clapeyron’s equation to the melting
of a solid. A solid subjected to a given pressure melts at a sharply defined
temperature which varies with the pressure applied to the solid. Hence,
for a solid-liquid system the pressure for which the solid state and the
liquid state can coexist in equilibrium is a function of the temperature.
We shall now use (4.34) to calculate the derivative of this function. The
quantities λ, v1, and v2 in this case represent the heat of fusion and the
specific volumes of the solid and the liquid, respectively.

If we take the melting of ice as an example, we have: λ = 80 cal/gm =
335× 107 ergs/gm, v1 = 1.0907 cm3 gm−1, v2 = 1.00013 cm3 gm−1, T =
273.1 K. Substituting these values in (4.34), we obtain:

dp
dT

= −1.35× 108 dynes cm−2 K−1 = −134 atm/K

That is, an increase of pressure of 134 atmospheres lowers the melting
point of ice by 1 K.

It should be noticed, in particular, that the melting point of ice de-
creases with increasing pressure. In this respect water behaves differently
from the way in which most substances behave; in the majority of cases,
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the melting point increases with increasing pressure. This anomalous be-
havior of water is due to the fact that ice is less dense than water, whereas
in most other cases the solid is denser than the liquid.

The fact that the melting point of ice is lowered by pressure is of consid-
erable importance in geophysics because this phenomenon is responsible
for the motion of glaciers. When the mass of ice encounters a rock on the
glacier bed, the high pressure of the ice against the rock lowers the melting
point of the ice at that point, causing the ice to melt on one side of the rock.
It refreezes again immediately after the pressure is removed. In this way
the mass of ice is able to flow very slowly around obstacles.

4.6 The Van der Waals equation.

The characteristic equation of an ideal gas represents the behavior of real
gases fairly well for high temperatures and low pressures. However, when
the temperature and pressure are such that the gas is near condensation,
important deviations from the laws of ideal gases are observed.

Among the numerous equations of state that have been introduced to
represent the behavior of real gases, that of Van der Waals is especially
interesting because of its simplicity and because it satisfactorily describes
the behavior of many substances over a wide range of temperatures and
pressures.

Van der Waals derived his equation from considerations based on ki-
netic theory, taking into account to a first approximation the size of a
molecule and the cohesive forces between molecules. His equation of state
(written for one mole of substance) is:(

p +
a

V2

)
(V − b) = RT, (4.39)

where a and b are characteristic constants for a given substance. For a =
b = 0, (4.39) reduces to the characteristic equation of an ideal gas. The
term b represents the effect arising from the finite size of the molecules,
and the term a/V2 represents the effect of the molecular cohesive forces.

In Figure 4.6 some isothermals calculated from the Van der Waals equa-
tion of state have been drawn. If we compare them with the isothermals
of Figure 4.5, we see that the two sets possess many similar features. In
both cases, there exists an isothermal having a horizontal point of inflec-
tion C. This is the critical isothermal; and the point of inflection is the
critical point. The isothermals above the critical temperature show a sim-
ilar behavior in both figures. However, the isothermals below the critical
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Figure 4.6: Isotherms, according to Van der Waals equation, of a substance
on a (V, p) diagram.

temperature exhibit differences. The Van der Waals isothermals are contin-
uous curves with a minimum and a maximum, whereas the isothermals of
Figure 4.5 have two angular points and are horizontal in the region where
the Van der Waals isothermals take on their maxima and minima.

The reason for the qualitative different behavior of the two sets of isother-
mals in the region marked L, V in Figure 4.5 is that the points on the hori-
zontal stretch of the isothermals in Figure 4.5 do not correspond to homo-
geneous state, because along this stretch the substance splits into a liquid
and a vapor part. If we compress a nonsaturated vapor isothermally until
we reach the saturation pressure, and then reduce the volume still fur-
ther, condensation of part of the vapor generally occurs without further
increase in pressure. This corresponds to the isothermals of Figure 4.5.
However, if we compress the vapor very gently and keep it free of dust
particles, we can reach a pressure considerably higher than the saturation
pressure before condensation sets in. When this situation is realized, we
say that the vapor is supersaturated. The supersaturated states, however,
are labile; any slight disturbance may produce condensation, causing the
system to pass over into a stable state characterized by a liquid and a va-
por part.

The labile states are important for our discussion because they illus-
trate the possibility of the existence of homogeneous states in the region
of the saturated vapor. We assume that these labile states are represented
by the part BCDEF of the Van der Waals isothermal ABCDEFG (Figure
4.6), whereas the horizontal stretch BF of the discontinuous isothermal
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Figure 4.7: An isotherm of a substance at supersaturated conditions on a
(V, p) diagram.

ABHDIFG represents the stable liquid-vapor states. If it were possible to
realize all the labile states on the Van der Waals isothermal, one could pass
by a continuous isothermal process from the vapor represented by the part
FG of the isothermal to the liquid represented by the part BA.

Given a Van der Waals isothermal, we may now with so determine
what the pressure of the saturated vapor is when its temperature is equal
to that of the given isothermal; or, geometrically speaking, how high above
the V-axis we must draw the horizontal stretch BF which corresponds to
the liquid-vapor state. We shall prove that this distance must be such that
the areas BCDH and DIFE are equal.

In order to prove this, we first show that the work performed by a
system during a reversible isothermal cycle is always zero. From (2.6) we
see that the work performed during a cycle is equal to the heat absorbed
by the system. But for a reversible cycle, (4.6) holds; and since in our case
the cycle is isothermal, we may remove 1/T from under the integral sign
in (4.6). Equation (4.6) now tells us that the total heat absorbed, and, hence,
the total work done during the cycle, is zero.

We shall now consider the reversibly isothermal cycle BCDEFIDHB
4.6. The work performed during this cycle, as measured by its area, must
vanish. But DEFID is described in a clockwise direction so that its area its
positive, whereas BCDHB, which is described in a counterclockwise di-
rection, has a negative area. Since the total area of the cycle BCDEFIDHB
is zero, the absolute values of the areas of the two cycles BCDHB and
DEFID must be equal. Q.E.D.

The objection might be raised against the above demonstration that
since the area of the isothermal cycle BCDHB is obviously non-vanishing,
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it is not true that the work performed during a reversible isothermal cycle
is always zero. The answer to this objection is that the cycle BCDHB is not
reversible.

In order to see this, we should notice that the point D on our diagram
represents two different states, depending on whether we consider it as
being a point on the Van der Waals isothermal BCDEF or a point on the
liquid-vapor isothermal BHDIF. Although the volume and pressure rep-
resented by D are the same in both cases, in the case of the Van der Waals
isothermal, D represents a labile homogeneous state, whereas in the case
of the liquid-vapor isothermal, D represents a stable nonhomogeneous
state composed of a liquid and vapor part. When we perform the cycle
BCDHB, we pass from the state D on the Van der Waals isothermal to the
state D on the liquid-vapor isothermal. Since the liquid-vapor state D is
more stable than the Van der Waals state D, this step is irreversible because
it could not occur spontaneously in the opposite direction. Thus, the entire
cycle BCDHB is irreversible, and therefore its area need not vanish.

The critical data Tc, Vc, and pc of a substance can be expressed in terms
of the constants a and b which appear in the Van der Waals equation of the
substance.

The Van der Waals equation (4.39), when p and T are given, is an equa-
tion of the third degree in V. In general, therefore, there are three different
roots of V for given values of T and p. The critical isothermal, T = Tc,
however, has a horizontal point of inflection at p = pc, V = Vc; that is
there is a third-order contact at V = Vc between the critical isothermal and
the horizontal line p = pc. Hence, it follows that the cubic equation for V
which is obtained by placing p = pc and T = Tc in (4.39) has a triple root
V = Vc. This cubic equation can be written in the form:

pcV3 − (pcb + RTc)V2 + aV − ab = 0.

Since Vc is a triple root of this equation, the left-hand side must be of
form pc (V −Vc)

3. Hence, we find, by comparison, that:

V3
c =

ab
pc

; 3V2
c =

a
pc

; and 3Vc =
pcb + RTc

pc
.

If we solve these three equations for Vc, pc, and Tc, we obtain the equations:

Vc = 3b; pc =
a

27b2 ; and Tc =
8

27
a

Rb
, (4.40)

which express the critical data in terms of the constants a and b.
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It is worth noticing that if we take Vc, pc, and Tc as the units of vol-
ume, pressure, and temperature, respectively, the Van der Waals equation
assumes the same form for all substances. Placing

P =
p
pc

; V =
V
Vc

; T =
T
Tc

,

and making use of (4.40), we obtain from (4.39):(
P +

3
V2

)(
V − 1

3

)
=

8
3
T . (4.41)

Since this equation contains only numerical constants, it is the same
for all substances. The states of various substances which are defined by
the same values of P , V , and T are called corresponding states, and (4.41) is
often called “Van der Waals’ equation of corresponding states.”

In Section 4.4 we showed that if a substance obeys the equation of state,
pV = RT, of an ideal gas, we can deduce thermodynamically that its en-
ergy depends on the temperature only and not on the volume. This result
is true only for ideal gases. For real gases, U depends also on the volume.

From (4.39) we deduce that:

p =
RT

V − b
− a

V2 ; (4.42)

this together with (4.28) gives:(
∂U
∂V

)
T
= T

∂

∂T

{
RT

V − b
− a

V2

}
− RT

V − b
+

a
V2

=
a

V2 .

If we integrate this equation with respect to V (keeping T constant), we
obtain:

U = − a
V

+ f (T) , (4.43)

since the constant of integration need be constant with respect to V only
but may still be a function of T. The term − a

V
in (4.43) represents the

potential energy of the cohesive forces between the molecules.
f (T) cannot be further determined by means of thermodynamics along;

its determination requires some data on the specific heats. Let us assume,
for example, that the molecular heat at constant volume, CV , its constant.
From (2.15) and (4.43) we obtain, then,

CV =

(
∂U
∂T

)
V
= f ′ (T) .
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Integrating, we get:
f (T) = CVT + w,

where w is a constant. Equation (4.43) now becomes:

U = CVT − a
V

+ w. (4.44)

With this expression for the energy, we can easily calculate the entropy
of one mole of a Van der Waals gas. From (4.12), (2.11), (4.42), and (4.44),
we obtain:

dS =
dQ
T

=
1
T
(dU + pdV)

=
1
T

(
CVdT +

a
V2 dV

)
+

1
T

(
RT

V − b
− a

V2

)
dV

= CV
dT
T

+ R
dV

V − b
,

or, on integrating,

S = CV ln T + R ln (V − b) + const. (4.45)

Notice the similarity of this formula to (4.26), which is the expression for
the entropy of an ideal gas.

In Section 2.4 we defined an adiabatic transformation as a reversible
transformation during which the system is thermally insulated. Thus,
along an adiabatic transformation dQ = 0, so that from (4.12), dS =
dQ/T = 0, or S = const.. That is, if a system suffers an adiabatic transfor-
mation, its entropy remains constant. For this reason, adiabatic transfor-
mations are sometimes called isoentropic.

The equation of an adiabatic transformation of a Van der Waals gas
is immediately obtained from (4.45) by taking the entropy constant. This
gives:

CV ln T + R ln (V − b) = const.

or

T (V − b)
R

CV = const. (4.46)

This equation for the adiabatics of a Van der Waals gas is very similar to
equation (2.28) for the adiabatics of an ideal gas.
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Problems

1. What is the entropy variation of 1, 000 grams of water when raised
from freezing to boiling temperature? (Assume a constant specific
heat = 1 cal/gm.K)

2. A body obeys the equation of state:

pV1.2 = 109T1.1

A measurement of its thermal capacity inside a container having the
constant volume 100 liters shows that under these conditions, the
thermal capacity is constant and equal to 0.1 cal/deg. Express the
energy and the entropy of the system as functions of T and V.

3. The boiling point of ethyl alcohol (C2H6O) is 78.3◦C; the heat of va-
porization is 855 joules/gm. Find dp/dT at the boiling point.
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Chapter 5

Thermodynamic Potentials

5.1 The free energy.

In a purely mechanical system the external work L performed during a
transformation is equal to minus the variation, ∆U, of its energy. That is,

L = −∆U. (5.1)

For thermodynamical systems there is no such simple relationship be-
tween the work performed and the variation in energy because energy
can be exchanged between the system and its environment in the form of
heat. We have, instead, the first law of thermodynamics (2.5), which we
can write in the form:

L = −∆U + Q. (5.2)

Many transformations of thermodynamical systems occur while the
systems are in thermal contact with the environment, so that an exchange
of heat between the system and the environment can take place. In that
case L may be larger or smaller than −∆U, depending on whether the
system absorbs heat from or gives up heat to the environment.

We suppose now that our system s is in thermal contact with an en-
vironment which is at a constant temperature T throughout, and we con-
sider a transformation of our system from an initial state A to a final state
B. Applying the inequality (4.13) to this transformation, we have:∫ B

A

dQ
T
≤ S (B)− S (A) .

Since the system receives heat only from a source whose temperature is
constant, we may remove 1/T from under the integral sign, and we find
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that

Q =
∫ B

A
dQ ≤ T {S (B)− S (A)} . (5.3)

We thus obtain an upper limit to the amount of heat which the system
can receive from the environment. If the transformation from A to B is
reversible, the equality sign holds in (4.13) and therefore in (5.3) also. In
this case (5.3) gives exactly the amount of heat received by the system
during the transformation.

From (5.2) and (5.3) we obtain, on putting ∆U = U (B)−U (A):

L ≤ U (A)−U (B) + T {S (B)− S (A)} . (5.4)

The inequality places an upper limit on the amount of work that can be
obtained during the transformation from A to B. If the transformation is
reversible, the equality sign holds, and the work performed is equal to the
upper limit.

Let us suppose now that the temperatures of the initial and final states,
A and B, are the same and equal to the temperature T of the environment.
We define a function F of the state of the system as follows:

F = U − TS. (5.5)

In terms of this function F, which is called the free energy of the system, we
can write (5.4) in the form:

L ≤ F (A)− F (B) = −∆F. (5.6)

In (5.6), also, the equality sign holds if the transformation is reversible.
The content of equation (5.6) can be stated in words as follows:
If a system suffers a reversible transformation from an initial state A

to a final state B both of which states have a temperature equal to that of
the environment, and if the system exchanges heat with the environment
only, during the transformation, the work done by the system during the
transformation is equal to the decrease in the free energy of the system.
If the transformation is irreversible, the decrease in the free energy of the
system is only an upper limit on the work performed by the system.1

1This result is very often stated as follows:
When a system undergoes an isothermal transformation, the work L performed by it

can never exceed minus the variation, ∆F, of its free energy; it is equal to −∆F if the
transformation is reversible.

Our result is more general because it holds not only for isothermal transformations but
also for transformations during which the system assumes temperatures different from
T in the intermediate states, provided only that the exchange of heat occurs solely with
the environment which is at the same temperature T throughout.
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By comparing (5.6) with (5.1), which is true for purely mechanical sys-
tems only, we see that the free energy, in thermodynamical systems which
can exchange heat with their environments, plays a role analogous to heat
played by the energy for mechanical systems. The main difference is that
in (5.1) the equality sign holds, whereas in (5.6) the equality sign holds for
reversible transformations.

We now consider a system that is dynamically (not thermally) insu-
lated from its environment in the sense that any exchange of energy in the
form of work between the system and its environment is impossible. The
system can then perform only isochore transformations.

If the pressure at any instant of time is the same for all the parts of
the system, and work can be performed by the system only as an effect
of the forces exerted by this pressure on the walls, then the system is dy-
namically insulated when it is enclosed inside a container with invariable
volume. Otherwise the dynamical insulation might require more compli-
cated devices.

We assume that, although our system is dynamically insulated, it is in
thermal contact with the environment and that its temperature is equal
to the temperature T of the environment. For any transformation of our
system, we have L = 0; we obtain thus from (5.6):

0 ≤ F (A)− F (B) ,

or
F (B) ≤ F (A) . (5.7)

That is, if a system is in thermal contact with the environment at the tem-
perature T, and if it is dynamically isolated in such a way that no external
work can be performed or absorbed by the system, the free energy of the
system cannot increase during a transformation.

A consequence of this fact is that, if the free energy is a minimum, the sys-
tem is in a state of stable equilibrium; this is so because any transformation
would produce an increase in the free energy, and this would be in con-
tradiction to (5.7). In the case of mechanical systems, stable equilibrium
exists if the potential energy is a minimum. Since the condition for stable
equilibrium of a thermodynamical system enclosed in a rigid container
and having the temperature of the environment is that the free energy be
a minimum, the free energy is often called the “thermodynamic potential
at constant volume.” Notice, however, that, strictly speaking, the condi-
tion for the validity of (5.7) is not only that the volume of the container
be constant but also that no external work be performed by the system.
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If the system is at a uniform pressure, however, the two conditions are
equivalent.

We now consider an isothermal transformation, I, of a system at the
temperature T from a state A to a state B, and also an isothermal transfor-
mation, II, between two states A′ and B′ at the temperature T + dT. A; is
obtained from A by an infinitesimal transformation during which the tem-
perature is raised by an amount dT while no external work is done. If the
system is at a uniform pressure throughout, this can be realized if the vol-
umes of A and A′ are equal (isochore transformation). Similarly, during
the infinitesimal transformation from B to B′ no work is to be performed.

Let L and L + dL be the maximum amounts of work that can be ob-
tained from the transformations I and II, respectively. We have, then

L = F (A)− F (B) (5.8)

L + dL = F
(

A′
)
− F

(
B′
)

,

or
dL
dT

=
dF (A)

dT
− dF (B)

dT
, (5.9)

where we denote by dF (A) and dF (B), respectively, F (A′) − F (A) and
F (B′)− F (B). But we have:

F (A) = U (A)− TS (A) ,

or, taking the differentials of both sides,

dF (A) = dU (A)− TdS (A)− dTS (A) . (5.10)

Since no work is performed in the transformation from A to A′, the
amount of heat received by the system during this infinitesimal transfor-
mation is, according to (2.5),

dQA = dU (A) ;

and, from (4.12),

dS (A) =
dQA

T
=

dU (A)

T
.

Equation (5.10) now gives:

dF (A)

dT
= −S (A) =

F (A)

T
− U (A)

T
.
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Similarly, we obtain:

dF (B)
dT

= −S (B) =
F (B)

T
− U (B)

T
.

From (5.8) and (5.9) we thus find:

L− T
dL
dT

= −∆U, (5.11)

when ∆U = U (B) −U (A) is the variation in energy resulting from the
transformation from A to B. Equation (5.11) is called the isochore of Van’t
Hoff and has many useful applications.

At this point, we shall derive a useful expression for the pressure of
a system whose state can be represented on a (V, p) diagram. Let us con-
sider an infinitesimal, isothermal, reversible transformation which changes
the volume of the system by an amount dV. We can apply to this transfor-
mation equation (5.6) with the equality sign because the transformation is
reversible. Since:

L = pdV, and ∆F =

(
∂F
∂V

)
T

dV,

we have, from (5.6),

pdV = −
(

∂F
∂V

)
T

dV,

or (
∂F
∂V

)
T
= −p. (5.12)

We conclude this section by giving the expression for the free energy
of one mole of an ideal gas. This is immediately obtained from equations
(5.5), (2.19), and (4.26):

F = CVT + W − T (CV ln T + R ln V + a) . (5.13)

If we use (4.27) instead of (4.26), we obtain the equivalent formula:

F = CVT + W − T
(
Cp ln T − R ln p + a + R ln R

)
. (5.14)

5.2 The thermodynamic potential at constant pres-
sure.

In many thermodynamical transformations the pressure and the tempera-
ture of the system do not change but, instead, remain equal to the pressure
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and the temperature of the environment during the course of the transfor-
mation. Under such circumstances it is possible to define a function Φ of
the state of the system which has the following property: if the function
Φ is a minimum for a given set of values of the pressure and the temper-
ature, then the system will be in equilibrium at the given pressure and
temperature.

We consider an isothermal, isobaric transformation at the constant tem-
perature T and the constant pressure p which takes our system from a state
A to a state B. If V (a) and V (B) are the initial and final volumes occupied
by the system, then the work performed during the transformation is:

L = p [V (B)−V (A)] .

Since the transformation is isothermal, we may apply equation (5.6) to
it; on doing this, we obtain:

pV (B)− pV (A) ≤ F (A)− F (B) .

We now define a new function Φ of the state of the system as follows:

Φ = F + pV = U − TS + pV. (5.15)

In terms of Φ, the preceding inequality now becomes:

Φ (B) ≤ Φ (A) . (5.16)

The function Φ is called the thermodynamic potential at constant pressure.
It follows from (5.16) that in an isobaric, isothermal transformation of a
system, the thermodynamic potential at constant pressure can never in-
crease.

We may therefore say that if the temperature and the pressure of a sys-
tem are kept constant, the state of the system for which the thermodynamic
potential Φ is a minimum is a state of stable equilibrium. The reason for this is
that if Φ is a minimum, any spontaneous change in the state of the system
would have the effect of increasing Φ; but this would be in contradiction
to the inequality (5.16).

The following properties of Φ for systems whose states can be repre-
sented on a (V, p) diagram are sometimes useful.

If we choose T and p as the independent variables and differentiate
(5.15) with respect to p, we find that:(

∂Φ
∂p

)
T
=

(
∂U
∂p

)
T
− T

(
∂S
∂p

)
T
+ p

(
∂V
∂p

)
T
+ V.
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But from the definition of the entropy and from the first law, we have for
a reversible transformation:

dQ = TdS = dU + pdV;

or, in our case, for an isothermal change of pressure:

T
(

∂S
∂p

)
T
=

(
∂U
∂p

)
T
+ p

(
∂V
∂p

)
T

.

Hence, we find that: (
∂Φ
∂p

)
T
= V. (5.17)

Similarly, differentiation (5.15) with respect to T, we can show that:(
∂Φ
∂T

)
p
= −S. (5.18)

As an example of the usefulness of the potential Φ, we shall employ it
to derive Clapeyron’s equation, which we have already derived in Section
4.5 by a different method.

We consider a system composed of a liquid and its saturated vapor en-
closed in a cylinder and kept at a constant temperature and pressure. If U1,
U2, S1, S2, and V1, V2 are the energies, entropies, and volumes of the liquid
and the vapor parts, respectively, and U, S, and V are the corresponding
quantities for the total system, then,

U = U1 + U2

S = S1 + S2

V = V1 + V2,

so that, from (5.15),
Φ = Φ1 + Φ2,

where Φ1 and Φ2 are the potentials of the liquid and vapor parts, respec-
tively.

Let m1 and m2 be the masses of the liquid part and the part, respec-
tively, and let u1, s1, v1, and ϕ1 and u2, s2, v2, and ϕ2 be the specific ener-
gies, entropies, volumes, and thermodynamic potentials of the liquid and
the vapor. We have, then,

Φ1 = m1ϕ1
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Φ2 = m2ϕ2.

We know from the general properties of saturated vapors that all the
specific quantities u1, u2, s1, s2, v1, and v2 and the pressure p are functions
of the temperature only. Hence ϕ1 and ϕ2 are functions of T only, and we
may write:

Φ = m1ϕ1 (T) + m2ϕ2 (T) .

We start with the system in equilibrium and perform an isothermal
transformation, keeping the pressure constant so that only m1 an m2 can
vary. Let m1 be increased by an amount dm1 as a result of this transforma-
tion. Then, since m1 + m2 = m = const., m2 will decrease by an amount
dm1. The thermodynamic potential will now be given by the expression:

(m1 + dm1) ϕ1 + (m2 − dm1) ϕ2 = Φ + dm1 (ϕ1 − ϕ2) .

Since the system was initially in a state of equilibrium, Φ must have
been a minimum initially. From this and from the above equation it fol-
lows that:

ϕ1 = ϕ2,

or
(u2 − u1)− T (s2 − s1) + p (v2 − v1) = 0.

Differentiating with respect to T, we find that:

d
dT

(u2 − u1)−T
d

dT
(s2 − s1)− (s2 − s1)+

dp
dT

(v2 − v1)+ p
d

dT
(v2 − v1) = 0.

But
T

ds
dT

=
du
dT

+ p
dv
dT

.

Hence, the preceding equation reduces to:

− (s2 − s1) +
dp
dT

(v2 − v1) = 0.

But (s2 − s1) is the variation in entropy when one gram of liquid is
vaporized at constant temperature; hence, it is equal to λ/T, where λ is
the heat of vaporization of the substance. We thus obtain the Clapeyron
equation:

dp
dT

=
λ

T (v2 − v1)
.

We shall now write down the expression for the thermodynamic poten-
tial at constant pressure for one mole of an ideal gas. From (5.15), (5.14),
the equation of state, pV = RT, and (2.23), we obtain:

Φ = CpT + W − T
(
Cp ln T − R ln p + a + R ln R

)
. (5.19)
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5.3 The phase rule.

When a system consists of only a single homogeneous substance, it is said
to consist of only one phase. If a heterogeneous system is composed of
several parts each of which is homogeneous in itself, the system is said to
consist of as many phases as there are homogeneous parts contained in the
system.

As an example of a system composed of only one phase, we may con-
sider a homogeneous liquid (not necessarily a chemically pure substance;
solutions may also be considered), a homogeneous solid, or a gas.

The following are some examples of systems that consist of two phases:
a system composed of water and water vapor; a saturated solution of salt
in water with some of the solid salt present; a system composed of two
immiscible liquids; and so forth. In the first example, the two phases are:
a liquid phase composed of water, and a gaseous phase composed of the
water vapor. In the second example, the two phases are: the salt-water
solution, and the solid salt. In the third example, the two phases are the
two liquids.

All the specific properties of a phase (that is, all the properties referred
to a unit mass of the substance constituting the phase: for example, the
density, the specific heat, and so forth) depending on the temperature T,
the pressure p, and the chemical constitution of the phase.

In order to define the chemical constitution of a phase, we must give
the percentage of each chemically defined substance present in the phase.

Strictly speaking, one could state that if the percentage of each chemical
element (counting the total amount of the element, both free and chemi-
cally bound to other elements) were known, the percentage of the different
compounds that could be formed with the given elements would be de-
termined by the given temperature T and pressure p of the phase. Indeed,
it is well known from the laws of chemistry that for any given tempera-
ture, pressure, and relative concentrations of the various elements present,
chemical equilibrium will always be reached within the phase. We may
therefore say that a phase is a homogeneous mixture of all the possible
chemical compounds which can be formed from the chemical elements
present in the phase, and that the percentage of each compound present is
completely determined by T, p, and the relative concentrations of all the
elements in the phase.

Consider, for example, a gaseous phase consisting of definite concen-
trations of hydrogen and oxygen at a given temperature and pressure. The
most abundant molecules formed from hydrogen and oxygen are H2, O2,
and H2O (for the sake of simplicity, we neglect the rarer molecules H, O,
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O3, and H2O2). The number of water molecules which will be formed in
our gaseous mixture at a given temperature and pressure is uniquely de-
termined, and hence the constitution of the gaseous mixture also, by the
concentrations of the hydrogen and the oxygen only. Strictly speaking,
we may therefore say that the independent components of a phase are the
chemical elements contained in the phase (each element is to be counted
as an independent component whether it is present in its elementary form
or in chemical combination with other elements). However, it is known
from chemical considerations that under certain conditions many chemi-
cal equilibrium are realized only after a period of time that is exceedingly
long as compared to ordinary time intervals. Thus, if we have a gaseous
mixture of H2 and O2 at normal temperature and pressure, chemical equi-
librium is reached when a large amount of hydrogen and the oxygen com-
bine to form water vapor. But the reaction

2H2 + O2 = 2H2O

proceeds so slowly under normal conditions that practically no combina-
tion of hydrogen and oxygen takes place in a reasonably short period of
time. Of course, the reaction would take place much more rapidly if the
temperature were high enough or if a suitable catalyzer were present.

We see from the preceding discussion that in all cases for which we
have a chemical compound that is formed or dissociated at an extremely
slow rate, we may consider the compound itself (and not its constituent
elements) as a practically independent component of the phase. If, for
example, we have a gaseous phase consisting of hydrogen, oxygen, and
water vapor at such a low temperature that practically no water is either
formed or dissociated, we shall say that our phase contains the three inde-
pendent components O2, H2, and H2O (and not only the two components
hydrogen and oxygen); the chemical constitution of the phase is then de-
termined by the masses of O2, H2, and H2O per unit mass of the phase.

It is clear from the above considerations that the number of indepen-
dent components can be either larger or smaller than the total number of
chemical elements present. In the previous example we had three inde-
pendent components (H2, O2, and H2O) instead of only two (H and O).
On the other hand, if water vapor alone is present, we can neglect its dis-
sociation into hydrogen and oxygen and consider the phase as consisting
of only one component, the water, and not of two.

Consider now a system composed of f phases and of n independent
components. Let mik be the mass of the kth component present in the ith
phase. Then the distribution of the components among the various phases
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can be conveniently described by the array:

m11, m21, · · · , m f 1
m12, m22, · · · , m f 2

...
... . . . ...

m1n, m2n, · · · , m f n.

(5.20)

At a given temperature and pressure, the condition for equilibrium of our
system is that the thermodynamic potential Φ be a minimum. This condi-
tion gives rise t a set of relations among the quantities (5.20).

We shall assume that the surface energy of our system is negligible, so
that Φ can be put equal to the sum of the thermodynamic potentials of all
the phases:

Φ = Φ1 + Φ2 + ... + Φ f . (5.21)

The function Φi depends on T, p, and the masses mi1, mi2, ..., min of the
various components in the ith phase:

Φi = Φi (t, p, mi1, ..., min) . (5.22)

The form of this function depends on the special properties of the ith
phase. We notice, however, that Φi, considered as a function of the n vari-
ables mi1, mi2, ..., min, is homogeneous of the first degree. Indeed, if we
change mi1, mi2, ..., min by the same factor K, we do not alter the consti-
tution of our phase (since it depends only on the ratios of the m’s), but
increase the total mass of the phase by the factor K. Thus, Φi becomes
multiplied by the same factor K.

If our system is to be in equilibrium at a given temperature and pres-
sure, Φ must be a minimum. This means, analytically, that if we impose
on our system an infinitesimal transformation at constant temperature and
pressure, the resulting variation in Φ must vanish. We consider a transfor-
mation as a result of which an amount δm (to be considered as an infinites-
imal of the first order) of the kth component is transferred from the ith to
the jth phase, all the other components and phases remaining unaffected.
Then, mik becomes mik− δm, and mjk becomes mjk + δm. In the variation of
Φ, only Φi and Φj will change. Thus, we obtain as the minimum condition:

δΦ = δΦi + δΦj =
∂Φj

∂mjk
δm− ∂Φi

∂mik
δm = 0,

or
∂Φi

∂mik
=

∂Φj

∂mjk
. (5.23)
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Since a similar equation must hod for any two phases and for any one
of the components, we obtain altogether the n ( f − 1) equations of equi-
librium:

∂Φ1

∂m11
=

∂Φ2

∂m21
= ... =

∂Φ f

∂m f 1
∂Φ1

∂m12
=

∂Φ2

∂m22
= ... =

∂Φ f

∂m f 2
...

∂Φ1

∂m1n
=

∂Φ2

∂m2n
= ... =

∂Φ f

∂m f n

(5.24)

We notice that these equations depend only on the chemical constitu-
tion of each phase and not on the total amount of substance present in the
phase. Indeed, since (5.22) is a homogeneous function of the first degree in
the m’s, its derivative with respect to any one of the m’s is homogeneous of
zero degree; that is, its derivatives depend only on the ratios of mi1, mi2, ...,
min. From the array (5.20), we see that there are (n− 1) f such ratios (then
n − 1 ratios of the n variables contained in a column of (5.20) determine
the constitution of one phase). Besides these (n− 1) f variables, we also
have the variables T and p in (5.24). We thus have a total of 2 + (n− 1) f
variables.

The difference, v, between this number and the number n ( f − 1), of
equations (5.24) is the number of the (n− 1) f + 2 variables which can be
chosen arbitrary, the remaining variables then being determined by the
equations (5.24). We therefore call v the degree of variability or the number of
degrees of freedom of the system. We have:

v = (n− 1) 2 = ( f − 1) n,

or
v = 2 + n− f . (5.25)

This equation, which was derived by Gibbs, expresses the phase rule.
It says that a system composed of f phases and n independent compo-
nents has a degree of variability v = 2 + n− f . By “degree of variability”
is meant the number of variables (we take as our variables T, p, and the
variables that determine the constitution of all the phases) that can be cho-
sen arbitrary.

To avoid misinterpretations, one should notice that only the composi-
tion and not the total amount of each phase is considered, because thermo-
dynamic equilibrium between two phases depends only on the constitu-
tions and not on the total amounts of the two phases present, as shown by
(5.23). A few examples will illustrate how the phase rule is to be applied.
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Example 1. A system composed of a chemically defined homogeneous
fluid. We have only one phase ( f = 1) and one component (n = 1). From
(5.25) we obtain, then v = 2. Thus, we can, if we with, choose the two
variables T and p, arbitrary; but when we then have no further possibility
of varying the constitution, since our substance is a chemically defined
compound. (Notice that the total amount of substance, as we have already
stated, is not counted as a degree of freedom.)

Example 2. A homogeneous system composed of two chemically de-
fined gases. Here we have one phase ( f = 1) and two independent com-
ponents (n = 2). From (5.25) it follows that v = 3. Indeed, we may freely
choose T, p, and the ratio of the two components that determines the com-
position of the mixture.

Example 3. Water in equilibrium with its saturated vapor. Here we have
two phases, liquid and vapor, and only one component, so that f = 2 and
n = 1. Thus, we must have v = 1. We can choose only the temperature ar-
bitrary, and the pressure will then be equal to the pressure of the saturated
vapor for the given temperature. Since there is only one component, we
obviously have no freedom of choice in the composition of the two phases.
Notice also in this example that for a given temperature we can have equi-
librium between arbitrary amounts of water and water vapor provided
the pressure is equal to the saturation pressure. However, the amounts of
water and water vapor are not counted as degree of freedom.

Figure 5.1: Phase diagram for water.

Example 4. A system composed of a definite chemical compound in
three different phases: solid, liquid, and vapor, as, for example, ice, water,
and water vapor. We have here one component and three phases: n = 1,
f = 3. We therefore find from (5.25) that v = 0. This means that there is
no freedom of choice of the variables at all: the three phases can coexists
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only for a fixed value of the temperature and a fixed value of the pressure.
This fact can be illustrated with the aid of the diagram in Figure 5.3, in

which temperatures and pressures are plotted as abscissae and ordinates,
respectively.

The curve AB represents the pressure of the saturated water vapor
plotted against the temperature. When the values of T and p correspond
to a point on this curve, water and water vapor can coexist. If, keeping the
temperature constant, we increase the pressure, equilibrium between the
water and the vapor no longer exists, and all the substance condenses into
the liquid phase. If, instead, we decrease the pressure, all the substance
evaporates. Hence, for points above the curve AB we have water, and for
points below it we have vapor, as indicated in the figure.

The curve AC is analogous to AB, but is corresponds to the pressure of
the saturated vapor in contact with ice and not with liquid water. Above
the curve AC ice is stable, and below it vapor is stable.

Since water and vapor can coexist along AB, and ice and vapor can co-
exist along AC, it is necessary that the point on the diagram corresponding
to the values of T and p for which ice, water, and vapor coexist lie on both
curves; that is, that this point coincide with the point of intersection A of
the two curves. We see now that the three phases can coexists only for a
definite value of the temperature and the pressure.

The point A is called the triple point because it is the intersection not
only of water-vapor curve and the ice-vapor curve but also of the ice-water
curve AD. These three curves divide the T, p plane into three regions that
represent the ranges of stability of vapor, ice, and water; the triple point is
at the boundary of the three regions.

The triple point of water is at T = 0.0075◦C and p = 0.00602 atm.
Since the pressure at the triple point is less than atmospheric pressure, the
horizontal line p = 1 atm (the dotted line on the diagram) intersects the
three regions ice, liquid, and vapor. The intersection of the dotted line with
the curve AD corresponds to a temperature equal to the freezing point f of
water at atmospheric pressure (0◦C). The intersection b with the curve AB
corresponds to the boiling temperature of water at atmospheric pressure
(100◦C).

For some substances the pressure at the triple point is higher than one
atmosphere. For these substances the dotted horizontal line correspond-
ing to atmospheric pressure lies below the triple point and passes, there-
fore, directly from the solid to the vapor region without intersecting the
liquid region. At atmospheric pressure these substances do not liquefy
but vaporize directly from solid phase (sublimation); they can exist in the
liquid phase only at sufficiently high pressures.
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5.4 Thermodynamics of the reversible electric cell.

In all previous applications of the laws of thermodynamics, we have gen-
erally considered systems that could perform only mechanical work. But,
as we have already seen in Section 2.1, mechanical and electrical work
obey the same thermodynamical laws; they are thermodynamically equiv-
alent. The reason for this is that there are processes which can transform
mechanical work completely into electrical energy, and vice versa.

As an example of a system which can perform electrical work, we shall
study in this section the reversible electrolytic cell. By a “reversible elec-
trolytic cell” we mean a cell such that reversal of the direction of the cur-
rent flowing through it causes the chemical reactions taking place in it to
proceed in the opposite sense. A reversible cell can always be brought
back to its initial state by reversing the flow of current through it.

Let v be the electromotive force of the cell. The electrical work per-
formed by the cell when we permit an amount e of electricity to flow
through it is:

L = ev. (5.26)

Of course, the cell actually performs this amount of work only if we keep
just a very small amount of current flowing through it, that is, if we make
sure that the process occurs reversibly. Otherwise, some energy will be
transformed into heat inside the cell as a result of the Joule effect.

Let U (T) be the energy of our cell before any electricity has flowed
through it. We assume that U (T) depends only on the temperature be-
cause we assume that the volume of our cell is practically invariable (that
it is an isochore cell), and consequently neglect any possible effects which
the pressure may have on the energy.

We now consider the state of the cell after a quantity e of electricity has
flow through it. The flow of electricity through the cell results in certain
chemical changes within the cell, and the amount of substance which is
chemically transformed is proportional to e. Thus, the energy of the cell
will no longer be equal to U (T) but will be changed by an amount pro-
portional to e. Denoting by U (T, e) the new energy of the cell, we have
thus:

U (T, e) = U (T)− eu (T) , (5.27)

where u (T) is the decrease in the energy of the cell when a unit quantity
of electricity flows through it.

We now apply the Van’t Hoff isochore (5.11) to the isothermal transfor-
mation from the initial state before any electricity has flowed through the
cell (energy = U (T)) to the final state after the amount e has flow through
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(energy given by (5.27)). From (5.27) we have for the variation in energy:

∆U = −eu (T)

The work performed is given by (5.26). Substituting in (5.11) and dividing
both sides by e, we obtain:

v− T
dv
dT

= u. (5.28)

This equation, which is called the equation of Helmholz, establishes a
relationship between the electromotive force v and the energy u. We notice
that if no heat were exchanged between the cell and its environment, we
should expect to find v = u. The extra term T dv/dT in (5.28) represents
the effect of the heat that is absorbed (or given out) by the cell from the
environment when the electric current flows.

We can also obtain (5.28) directly without using the Van’t Hoff isochore.
Let us connect the cell to a variable condenser having a capacity C. The
amount of electricity absorbed by the condenser is:

e = Cv (T) .

We now consider C and T as the variables which define the state of the
system composed of the cell and the condenser. If we change the capacity
of the condenser by an amount dC by shifting the plates of the condenser,
the system performs a certain amount of work because of the attraction
between the plates. This amount of work is2:

dL =
1
2

dCv2 (T) .

The energy of our system is the sum of the energy (5.27) of the cell,

U (T)− eu (T) = U (T)− Cv (T) u (T) ,

2This formula is obtained as follows: The energy of an isolated condenser is 1
2 e2/C. If

we change C, the work done is equal to minus the variation in energy, that is,

dL = −d
(

1
2

e2

C

)
=

e2

2C2 dC,

where e is kept constant because the condenser is isolated. Since e = Cv, we obtain the
formula used in the text.
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and the energy of the condenser, 1
2Cv2 (T). From the first law of thermody-

namics (2.5), we find that the heat absorbed by the system in an infinitesi-
mal transformation during which T and C change by amounts dT and dC
is:

dQ = dU + dL

= d
[

U (T)− Cv (T) u (T) +
1
2

Cv2 (T)
]
+

1
2

dCv2 (T)

= dT
[

dU
dT
− Cv

du
dT
− Cu

dv
dT

+ Cv
dv
dT

]
+ dC

[
v2 − uv

]
.

The differential of the entropy is, therefore,

dS =
dQ
T

=
dT
T

[
dU
dT
− Cv

du
dT
− Cu

dv
dT

+ Cv
dv
dT

]
+

dC
T

[
v2 − uv

]
.

Since dS must be a perfect differential, we have:

∂

∂C

dU
dT
− Cv

du
dT
− Cu

dv
dT

+ Cv
dv
dT

T
=

∂

∂T
v2 − uv

T
.

If we perform the differentiations indicated and remember that U, u, and
v are functions of T only, we immediately obtain (5.28).

Problems

1. With the aid of the phase rule discuss the equilibrium of a saturated
solution and the solid of the dissolved substance.

2. How many degrees of freedom has the system composed of a certain
amount of water and a certain amount of air? (Neglect the rare gases
and the carbon dioxide contained in air.)

3. The electromotive force of a reversible electric cell, as a function of
temperature, is

0.924 + 0.0015t + 0.0000061t2 volts,

t being the temperature in ◦C. Find the heat absorbed by the cell
when one coulomb of electricity flows through it isothermally at a
temperature of 18◦C.
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Chapter 6

Gaseous Reactions

6.1 Chemical equilibria in gases.

Let us consider a gaseous system composed of a mixture of hydrogen, oxy-
gen, and water vapor. The components of this system can interact chemi-
cally with each other according to the following chemical reaction:

2H2 + O2 
 2H2O.

The symbol 
 means that the reaction can proceed from left to right (for-
mation of water) or from right to left (dissociation of water). Indeed, it
is well known from the laws of chemistry that for any given temperature
and pressure a state of equilibrium is reached for which the total amount
of water vapor present remains unchanged, so that apparently water va-
por is neither being formed nor dissociated. The actual state of affairs that
exists at this equilibrium point is such that the reaction indicated above
is proceeding at equal rates in both directions, so that the total amount
of H2O present remains constant. If we subtract some water vapor from
the system after equilibrium has set in, the reaction from left to right will
proceed with greater speed than the one from right to left until a suffi-
cient amount of additional H2O has been formed to establish a new state
of equilibrium. If we add some water vapor, the reaction from right to left
becomes preponderant for a certain length of time. Chemical equilibria in
gaseous systems are regulated by the law of mass action.

We write the equation of a chemical reaction in the general form:

n1A1 + n2A2 + ... + nr Ar 
 m1B1 + m2B2 + ... + msBs, (6.1)

where A1, A2, ..., Ar are the symbols for the molecules reaction on one
side and B1, B2, ..., Bs the symbols for those reacting on the other side.
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The quantities n1, n2, ..., and m1, m2, ... are the integer coefficients of the
reaction. We shall designate the concentrations of the different substances
expressed in moles per unit volume by the symbols [A1], [A2], ..., and [B1],
[B2], .... We can now state the law of mass action as follows:

When equilibrium is reached in a chemical reaction, the expression

[A1]
n1 [A2]

n2 ... [Ar]
nr

[B1]
m1 [B2]

m2 ... [Bs]
ms

= K (T) (6.2)

is a function of the temperature only.
The quantity K (T) can assume quite different values for different chem-

ical reactions. In some cases it will be very small, and the equilibrium will
be shifted toward the right-hand side; that is, when equilibrium has been
reached for such cases, the concentrations of the molecules on the right-
hand side are much larger than those of the molecules on the left-hand
side. If, instead, K (T) is large, the opposite situation exists.

It is instructive to give a very simple kinetic proof of the law of mass
action. The chemical equilibrium of the reaction (6.1) might conveniently
be called “kinetic equilibrium,” because even after the equilibrium condi-
tions have been realized, reactions among the molecules continue to take
place. At equilibrium, however, the number of reactions that take place
per unit time from left to right in (6.1) is equal to the number taking place
per unit time from right to left, so that the two opposing effects compen-
sate each other. We shall therefore calculate the number of reactions that
occur per unit time from left to right and set this equal to the correspond-
ing number of reactions proceeding in the opposite direction.

A reaction from left to right can occur as a result of a multiple colli-
sion involving n1 molecules A1, n2 molecules A2, ..., nr molecules Ar. The
frequency of such multiple collisions is obviously proportional to the n1th
power of [A1], to the n2th power of [A2], ..., to the nrth power of [Ar], that
is, to the product:

[A1]
n1 [A2]

n2 ... [Ar]
nr .

Thus, the frequency of the reactions from left to right must also be pro-
portional to this expression. Since the temperature determines the veloci-
ties of the molecules, the proportionality factor, K′ (T), will be a function
of the temperature. For the frequency of reactions from left to right, we
obtain, then, the expression:

K′ (T) [A1]
n1 [A2]

n2 ... [Ar]
nr .

Similarly, for the frequency of the reactions in the opposite direction,
we find:

K′′ (T) [B1]
m1 [B2]

m2 ... [Bs]
ms .
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At equilibrium these two quantities must be equal:

K′ (T) [A1]
n1 [A2]

n2 ... [Ar]
nr = K′′ (T) [B1]

m1 [B2]
m2 ... [Bs]

ms ,

or
[A1]

n1 [A2]
n2 ... [Ar]

nr

[B1]
m1 [B2]

m2 ... [Bs]
ms

=
K′′ (T)
K′ (T)

.

This is identical with the mass of law action (6.2) if we replace

K (T) =
K′′ (T)
K′ (T)

.

This simple kinetic argument gives us no information about the func-
tion K (T). We shall now show that by applying thermodynamics to gaseous
reactions we can not only prove the law of mass action independently of
kinetic considerations, but also determine the dependence of K (T) on the
temperature.

6.2 The Van’t Hoff reaction box.

The equilibria of gaseous reactions can be treated thermodynamically by
assuming the existence of ideal semipermeable membranes endowed with
the following properties: (1) A membrane semipermeable to the gas A is
completely impermeable to all other gases. (2) When a membrane semiper-
meable to the gas A separates two volumes, each containing a mixture of
A and some other gas, the gas A flows through the membrane from the
mixture in which its partial pressure is higher to the one in which its par-
tial pressure is lower. Equilibrium is reached when the partial pressures
of the gas A on both sides of the membrane have become equal.

Notice that a gas can flow spontaneously through a semipermeable
membrane from a region of lower total pressure toward a region of higher
total pressure, provided that the partial pressure of the gas that passes
through the membrane is higher in the region of lower total pressure than
in the region of higher total pressure. Thus, if a membrane semiperme-
able to hydrogen separates a box containing hydrogen at one atmosphere
of pressure from a box containing oxygen at two atmospheres, hydrogen
will flow through the membrane even though the total pressure on the
other side is twice as large.

We should notice, finally, that in reality no ideal semipermeable mem-
branes exist. The best approximation of such a membrane is a hot palla-
dium foil, which behaves like a semipermeable membrane for hydrogen.

89



In order to study the equilibrium conditions for the chemical reaction
(6.1), we shall first describe a process by which the reaction can be per-
formed isothermally and reversibly. This can be done with the aid of the
so-called Van’t Hoff reaction box.

Figure 6.1: Van’t Hoff reaction box.

This box is a large container in which great quantities of the gases A1,
A2, ... and B1, B2, ... are in chemical equilibrium at the temperature T.
On one side of the box (the left side of Figure 6.2) is a row of r windows,
and kth one of which, counting from the top, is semipermeable to the gas
Ak, while on the other side (the right-hand side of Figure 6.2, where we
have assumed that r = s = 2) is a row of s windows semipermeable in the
same order to the gases B1, B2, ..., Bs. On the outside of these windows are
attached some cylinders with movable pistons, as shown in the figure.

We shall now describe a reversible, isothermal transformation of our
system and calculate directly the work L performed by the system during
this transformation. According to the results of Section 5.1, however, L
must be equal to the free energy of the initial state minus that of the final
state of the transformation. By comparing these two expressions for L, we
shall obtain the desired result.

We start with our system initially in a state of which the piston in the
cylinders, B, on the right-hand side of the box are in contact with the win-
dows, so that these cylinders have zero volumes, while the pistons in the r
cylinders, A, on the left are in such a position that the kth cylinder contains
nk moles of the gas Ak (see Figure 6.2) at a concentration equal to the con-
centration, [Ak], of this gas inside the box; the partial pressures of the gas
on both sides of the semipermeable membrane are therefore equal, and a
state of equilibrium exists.

The reversible transformation from the initial to the final state can be
performed in the following two steps:

Step 1. Starting from the initial state (Figure 6.2), we shift the pistons in
the cylinders on the left-hand side of the box very slowly inward until all
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Figure 6.2: Isothermal transformation in Van’t Hoff reaction box.
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the gases contained in these cylinders have passes through the semiperme-
able membranes into the large box. At the end of this process, the system
will be in the intermediate state that is shown in Figure 6.2.

We assume that the content of the large box is so great that the relative
change in concentrations resulting from this inflow of gases is negligible.
The concentrations of the gases A during this process, therefore, remain
practically constant and equal in the order to [A1], [A2], ..., [Ar].

The work L performed by the system during this step is evidently neg-
ative because work must be done on the pistons against the pressures of
the gas. In the first cylinder the pressure remains constant and equal to
the partial pressure p1 of the gas A1 inside the box, while the volume of
the cylinder changes from the initial volume V1 to the final volume 0. The
work is equal to the product of the constant pressure p1 and the variation
in volume, that is, p1 (0−V1) = −p1V1. Since the cylinder, initially, con-
tained n1 moles, we have, from the equation of state, p1V1 = n1RT. The
work is thus equal to −n1RT. Summing the work for all the cylinders on
the left, we obtain:

LI = −RT
r

∑
i=1

ni.

Step 2. Starting from the intermediate state, we now shift the pistons in
the s cylinders on the right-hand side of the box (they are initially in con-
tact with the windows) very slowly outward. Since the bottom of the kth
cylinder, counting from the top down, is semipermeable to the gas Bk, this
cylinder will absorb the gas Bk during the process and its concentration in
the cylinder will be equal to that of the gas inside the large box, that is,
equal to [Bk]. We shift the pistons outward until the cylinders, in the order
from the top one down, contain m1, m2, ..., ms moles of the gases B1, B2, ...,
Bs, respectively.

We thus reach the final state of our transformation shown on the right
in Figure 6.2. Here the cylinders A have their pistons touching the win-
dows so that their volumes are zero, while the pistons in the cylinders B
are so placed that the kth cylinder, counting from the top down, contains
mk moles of the gas Bk at a concentration equal to the concentration, [Bk], of
the gas inside the box. The gases B1, B2, ..., Bs in the cylinders and box are
thus in equilibrium through the semipermeable bottoms of the cylinders.
The work performed by the system during this second step will obviously
be positive.
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This work LII can be calculated in the same way as in Step 1. We find:

LII = RT
s

∑
j=1

mj.

The total work performed during the entire transformation is the sum
of LI and LII, that is,

L = RT

(
s

∑
j=1

mj −
r

∑
i=1

ni

)
. (6.3)

This work is equal to the difference between the free energy of the ini-
tial state and that of the final state. To calculate this difference, we note that
the content of the large box is the same in the initial and final states. In-
deed, in going from one state to the other, we first introduced into the large
box n1 moles of A1, n2 moles of A2, ..., nr moles of Ar (Step 1), and then
extracted m1 moles of B1, m2 moles of B2, ..., ms moles of Bs. But according
to the chemical equation (6.1), the substances introduced into the large box
are equivalent to the substance withdrawn. Moreover, since the tempera-
ture and volume of the large box do not change, the chemical equilibrium
of the gas in the box readjust itself in such a way that the initial and final
states of these gases are identical. The only difference between the initial
and final states of the system is in the contents of the cylinders. Therefore,
the difference between the free energies of the two states is equal to the
difference between the free energy of the gases A contained in the cylin-
ders A in the initial state and the free energy of the gases B contained in
the cylinders B in the final state.

The free energy of the n1 moles of A1 in the first cylinder (initial state)
can be calculated as follows: The volume occupied by one mole of the
gas is evidently equal to the inverse of the concentration [A1]. The free
energy of one mole of A1 is then obtained from (5.13) by substituting in
that equation 1/ [A1] for the volume V of one mole. Since we have n1
moles of A1, the free energy of this gas is:

n1 {CV1T + W1 − T (CV1 ln T − R ln [A1] + a1)} ,

where CV1, W1, and a1 are the molecular heat and the energy and entropy
constants for the gas A1. Using similar notations for A2, ..., Ar, we find
for the free energy of the gases A contained initially in the cylinders A the
expression:

r

∑
i=1

ni {CViT + Wi − T (CVi ln T − R ln [Ai] + ai)}
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The free energy of the gases B in the cylinders B at the end of the pro-
cess is similarly given by:

s

∑
j=1

mj

{
C′VjT + W ′j − T

(
C′Vj ln T − R ln

[
Bj
]
+ a′j

)}

where C′Vj, W ′j , and a′j are the molecular heat and the energy and entropy
constants for the gas Bj.

The difference between these two expressions must be equal to the
work L given by (6.3). We thus have:

RT

(
s

∑
j=1

mj −
r

∑
i=1

n1

)

=
r

∑
i=1

ni {CViT + Wi − T (CVi ln T − R ln [Ai] + ai)}

−
s

∑
j=1

mj

{
C′VjT + W ′j − T

(
C′Vj ln T − R ln

[
Bj
]
+ a′j

)}
(6.4)

Dividing by RT and passing from logarithms to numbers, this equation
reduces to:

[A1]
n1 [A2]

n2 ... [Ar]
nr

[B1]
m1 [B2]

m2 ... [Bs]
ms

= e

1
R

{
s

∑
j=1

mj

(
R + C′Vj − a′j

)
−

r

∑
i=1

n1 (R + CVi − ai)

}

× T

1
R

(
r

∑
i=1

CVini −
s

∑
j=1

C′Vjmj

)
× e
−

1
RT

(
r

∑
1

niWi −
s

∑
1

mjW ′j

) (6.5)

The right-hand side of this equation is a function of T only. Thus, equa-
tion (6.5) not only proves the law of mass action (6.2), but it also gives the
form of the function K (T) explicitly.

We shall discuss the formula (6.5) in Section 6.4. In the next section we
shall give another proof of the same formula.
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6.3 Another proof of the equation of gaseous equi-
libria.

In this section we shall derive equation (6.5) by using the result obtained in
Section 5.1 that the states of equilibrium of a system at a given temperature
and volume are those for which the free energy is a minimum.

We consider a mixture of the gases A1, ..., Ar and B1, ..., Bs at the tem-
perature T enclosed in a container of fixed volume V and reacting chemi-
cally in accordance with equation (6.1). When a quantity of the gas inside
the container takes part in the chemical reaction, the concentrations of the
various gases present change; as a result of this, the free energy of the
mixture changes also. We shall now obtain the equilibrium condition for
the chemical reaction by making the free energy a minimum. To do this,
we must obtain the expression for the free energy of a mixture of gases of
given concentrations.

Dalton’s law (see Section 1.2) states that the pressure of a mixture of
(ideal) gases is the sum of the partial pressures of the components of the
mixture (the partial pressure of a component is the pressure that this com-
ponent would exert if it alone occupied the total space occupied by the
mixture). This law indicates that each component is unaffected by the
presence of the other components and so retains its own properties in the
mixture. We shall now generalize Dalton’s law by assuming that in a mix-
ture of ideal gases the energy and the entropy also are equal to the sums of
the energies and entropies (partial energies and partial entropies) which
each component would have if it alone occupied the total volume occu-
pied by the mixture at the same temperature as that of the mixture.

From the definitions (5.5) and (5.15) of the free energy and the thermo-
dynamic potential at constant pressure, it follows now immediately that
for a mixture of ideal gases these quantities are equal, respectively, to the
sum of the partial free energies and the sum of the partial thermodynamic
potentials at constant pressure of the components of the mixture.

With these assumptions we can now write down the expression for the
free energy of our mixture of gases. The free energy of one mole of the gas
A1 is given, as in the preceding section, by the expression:

CV1T + W1 − T (CV1 ln T − R ln [A1] + a1) .

Since the concentration of A1 in the volume V is [A1], there are present
altogether V [A1] moles of the gas A1. The partial free energy of this com-
ponent of our mixture is, therefore:

V [A1] {CV1T + W1 − T (CV1 ln T − R ln [A1] + a1)} .
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The free energy of the total system is obtained by summing up the partial
free energies of all the components in our mixture. On doing this, we
obtain for the total free energy the expression:

F = V
r

∑
i=1

[Ai] {CViT + Wi − T (CVi ln T − R ln [Ai] + ai)}

+ V
s

∑
j=1

[
Bj
] {

C′VjT + W ′j − T
(

C′Vj ln T − R ln
[
Bj
]
+ a′j

)} (6.6)

We consider now an infinitesimal reaction of the type (6.1) (that is, a
reaction in which an infinitesimal amount of substance is transformed).
If the reaction proceeds from the left to the right of (6.1), infinitesimal
amounts of the gases A1, A2, ..., Ar disappear and infinitesimal amounts of
the gases B1, B2, ..., Bs are formed. The fractions of moles of the gases A1,
A2, ..., Ar that disappear are proportional to the coefficients n1, n2, ..., nr,
respectively; and the fractions of moles of the gases B1, B2, ..., Bs that are
produced as a result of the transformation are proportional to the numbers
m1, m2, ..., ms, respectively. Consequently, the concentrations [A1], [A2], ...,
and [B1], [B2], ... undergo the variations:

−εn1,−εn2, ...,−εnr; εm1, εm2, ..., εms,

where ε is the infinitesimal constant of proportionality.
If F is to be a minimum for our state, the variation in F resulting from

the infinitesimal reaction must vanish. Since this variation can be calcu-
lated as though it were a differential, we have:

δF = − ∂F
∂ [A1]

εn1 −
∂F

∂ [A2]
εn2 − ...− ∂F

∂ [Ar]
εnr +

∂F
∂ [B1]

εm1

+
∂F

∂ [B2]
εm2 + ... +

∂F
∂ [Bs]

εms = 0.

Dividing this equation by εV, and replacing the derivatives by their values
as calculated from (6.6), we obtain the following equation:

−
r

∑
i=1

ni {CViT + Wi − T (CVi ln T − R ln [Ai] + ai) + RT}

+
s

∑
j=1

mj

{
C′VjT + W ′j − T

(
C′Vj ln T − R ln

[
Bj
]
+ a′j

)
+ RT

}
= 0.

It is immediately evident that this equation and equation (6.4) are iden-
tical. The equilibrium can thus be obtained at once in the same way as in
the preceding section.
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6.4 Discussion of gaseous equilibria; the princi-
ple of Le Chatelier.

From (6.2) and (6.5) we can obtain the explicit form of the function K (T),
which appears on the right-hand side of (6.2). [K (T) is sometimes called
the constant of the law of mass action; of course, it is a constant only if the
temperature is constant.] Comparing (6.2) and (6.5), we obtain:

K (T) = e

1
R


s

∑
j=1

(
R + C′Vj − a′j

)
mj −

r

∑
i=1

(R + CVi − ai) ni



× T

1
R

 r

∑
i=1

CVini −
s

∑
j=1

C′Vjmj


e
−

1
RT

 r

∑
i=1

niWi −
s

∑
j=1

mjW ′i


(6.7)

In order to discuss the way in which K (T) depends on the temperature,
we first define the heat of reaction H of the chemical reaction (6.1). We
consider a mixture of the gases A and B at constant volume and at a fixed
temperature. Let these gases react according to equation (6.1), so that n1,
n2, ..., nr moles of the gases A1, A2, ..., Ar, respectively, interact and give
rise to m1, m2, ..., ms moles of the gases B1, B2, ..., Bs, respectively. The
heat H develop by the system during this isothermal process is called the
heat of reaction at constant volume. The reaction is said to be exothermal or
endothermal, depending on whether heat is given out or absorbed by the
system when the reaction proceeds from the left to the right in equation
(6.1).

Since the reaction takes place at constant volume, no work is performed
by the system. Therefore, the heat absorbed by the system (= −H) is
equal, according to the first law (2.5), to the variation ∆U in energy of the
system:

H = −∆U.

Remembering that the energy of one mole of A1, for example, is equal
to CV1T + W1, and that the numbers of moles of the gases A1, A2, ..., Ar
and B1, B2, ..., Bs increase by the amounts −n1, −n2, ..., −nr and m1, m2,
..., ms, respectively, as a result of the reaction, we find that the variation in
energy associated with (6.1) is given by the expression:

∆U =
s

∑
j=1

mj

(
C′VjT + W ′j

)
−

r

∑
i=1

ni (CViT + Wi) .
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The heat of reaction is thus:

H =
r

∑
i=1

ni (CViT + Wi)−
s

∑
j=1

mj

(
C′VjT + W ′j

)
. (6.8)

Taking the logarithmic derivative of (6.7), we obtain:

d ln K (T)
dT

=

r

∑
1

CVini −
s

∑
1

C′Vjmj

RT
+

r

∑
1

Wini −
s

∑
1

W ′j mj

RT2 .

From this equation and (6.8), we now find that:

d ln K (T)
dT

=
H

RT2 . (6.9)

It is clear from this equation, which was derived by Helmholtz,1 that
K (T) is an increasing or a decreasing function of T, depending on whether
the heat of reaction is positive or negative; K (T) increases with the tem-
perature for exothermal reactions and decreases with increasing tempera-
ture for endothermal reactions.

One can easily see from (6.2) that an increase in K (T) means a change
of the equilibrium conditions in the direction of increasing concentrations
of the gases A and the decreasing concentrations of the gases B, that is,
a shift of the equilibrium from the right to the left of equation (6.1). A
decrease of K (T), on the other hand, means that the equilibrium is shifted
from the left to the right of that equation.

The effect which a change in the external conditions has on the equi-
librium of a chemical reaction can best be summarized by the Le Chatelier
principle. This principle, which enables one to determine without calcula-
tions the direction in which a change in the external conditions tends to
shift the equilibrium of a thermodymaical system, states the following:

If the external conditions of a thermodynamical system are altered, the equi-
librium of the system will tend to move in such a direction as to oppose the change
in the external conditions.

A few examples will serve to make the meaning of this statement clear.
We have already shown that if the reaction (6.1) is exothermal, then an in-
crease in the temperature shifts the chemical equilibrium toward the left-
hand side of equation (6.1). Since the reaction from left to right is exother-
mal, the displacement of the equilibrium toward the left results in the ab-
sorption of heat by the system and thus opposes the rise in temperature.

1This equation can also be derived directly by applying the Van’t Hoff isochore (5.11)
to a process similar to that described in Section 6.2.
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As a second example of the application of Le Chatelier’s principle, we
shall study the effect that a change in pressure (at constant temperature)
has on the chemical equilibrium of the reaction (6.1). We notice that if the
reaction (6.1) proceeds from left to right, then the number of moles in our
gaseous system changes; if

n1 + n2 + ... + nr < m1 + m2 + ... + ms, (6.10)

the number of moles increases, and if the opposite inequality holds, the
number of moles decreases. If we suppose that the inequality (6.10) ap-
plies, then a displacement of the equilibrium toward the right will increase
the pressure, and vice versa. From Le Chatelier’s principle we must ex-
pect, therefore, that an increase in the pressure of our gaseous mixture
will shift the equilibrium toward the left, that is, in such a direction as to
oppose the increase in pressure. (In general, an increase in pressure will
displace the equilibrium in such a direction as to decrease the number of
moles in the system, and vice versa.) This result can be obtained directly
from the law of mass action (6.2) as follows:

If we increase the pressure of our system while keeping the tempera-
ture constant, the concentrations of the components of our gaseous mix-
ture increase. If the chemical equilibrium were not affected, the concen-
trations of all the components would be increased by the same factor, and,
assuming (6.10) to hold, we should expect the left-hand side of (6.2) to
decrease. But since the expression on the right-hand side of (6.2) remains
constant, the left-hand side cannot decrease. Hence, the equilibrium must
be shifted toward the left in order to keep the left-hand side of (6.2) con-
stant.

We may conclude this section by stating that, in general, low pressures
favor dissociation processes while high pressures favor combination pro-
cesses.

Problems

1. For a chemical reaction of the type:

2A 
 A2

the equilibrium constant K (T) of the law of mass action at the tem-
perature of 18◦C is 0.00017. The total pressure of the gaseous mixture
is 1 atmosphere. Find the percentage of dissociated molecules.
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2. Knowing that the heat of reaction for the reaction considered in prob-
lem 1 is 50, 000 cal/mole, find the degree of dissociation at 19◦C and
1 atm.
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Chapter 7

The Thermodynamics of Dilute
Solutions

7.1 Dilute solutions.

A solution is said to be dilute when the amount of solute is small compared
to the amount of solvent. In this section we shall develop the fundamental
principles of the thermodynamics of dilute solutions.

Let us consider a solution composed of N0 moles of solvent and N1, N2,
..., Ng moles of the several dissolved substances A1, A2, ..., Ag, respectively.
If our solution is very dilute, we must have:

N1 � N0; N2 � N0; ...; Ng � N0. (7.1)

Our first problem will be to find the expressions for the energy, the vol-
ume, the entropy, and so forth, of our dilute solution. A straightforward
application of the thermodynamic equations will then yield all the other
properties of the dilute solution.

We consider first the energy U of our solution. Let u be the energy of a
fraction of the solution containing one mole of solvent. This fraction of the
solution will contain N1/N0 moles of the solute A1, N2/N0 moles of the
solute A2, ..., Ng/N0 moles of the solute Ag. Its energy will be a function
of T, p, and the quantities N1/N0, N2/N0, ..., Ng/N0; that is,

u = u
(

T, p,
N1

N0
,

N2

N0
, ...,

Ng

N0

)
. (7.2)

Since the entire solution contains N0 moles of solvent, its energy U is
N0 times larger than (7.2); that is,

U = N0u
(

T, p,
N1

N0
,

N2

N0
, ...,

Ng

N0

)
. (7.3)

101



We now make use of the fact that, since our solution is dilute, the ratios
N1/N0, N2/N0, ..., Ng/N0 are very small. We assume, therefore, that it
is possible to develop the function (7.2) in powers of these ratios and to
neglect all powers above the first. If we do this, we obtain:

u = u0 (T, p) +
N1

N0
u1 (T, p) + ... +

Ng

N0
ug (T, p) .

Substituting this expression in (7.3), we find that:

U = N0u0 (T, p) + N1u1 (T, p) + ... + Ngug (T, p)

=
g

∑
i=0

Niui (T, p) .
(7.4)

It should be noted that although the various terms in the expression (7.4)
for U are formally quite similar, the first term is much larger than all the
other because of the inequalities (7.1).

By a similar process of reasoning, we can show that, to the same order
of approximation, the volume can be written as:

V = N0v0 (T, p) + N1v1 (T, p) + ... + Ngvg (T, p)

=
g

∑
i=0

Nivi (T, p) .
(7.5)

We must now obtain the expression for the entropy or our solution.
To do this, we consider an infinitesimal reversible transformation during
which T and p change by the infinitesimal amounts dT and dp, white the
quantities N0, N1, ..., Ng do not vary. The change in entropy resulting from
this transformation is:

dS =
dQ
T

=
1
T
(dU + pdV)

=
g

∑
i=0

Ni
dui + pdvi

T
.

(7.6)

Since dS is a perfect differential for all values of the N’s, the coefficient
of each N in (7.6) must be a perfect differential. If we integrate these per-
fect differentials, we obtain a set of functions s0 (T, p), s1 (T, p), ..., sg (T, p)
such that:

dsi (T, p) =
dui + pdvi

T
. (7.7)
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If we now integrate (7.6), we obtain the expression for the entropy:

S =
g

∑
i=0

Nisi (T, p) + C
(

N0, N1, ..., Ng
)

. (7.8)

The constant of integration C, which is constant only with respect to T
and p, depends on the N’s; we have put this in evidence in (7.8). We can
determine the value of this constant as follows:

Since no restriction has been placed on the manner in which T and p
may vary, the expression (7.8) for S still applies if we choose p so small and
T so large that the entire solution, including all the solutes, vaporizes. Our
system will then be completely gaseous, and for such a system we already
know that the entropy is equal to the sum of the partial entropies of the
component gases (see Section 6.3). But the entropy of one mole of a gas at
the partial pressure pi and having the molecular heat Cpi is (see equation
(4.27)):

Cpi ln T − R ln pi + ai + R ln R. (7.9)

Hence, for our mixture of gases we have (since the partial pressure pi
of the substance A′i is equal to pNi/

(
N0 + ... + Ng

)
, where p is the total

pressure):

S =
g

∑
i=0

Ni

(
Cpi ln T − R ln p

Ni

N0 + ... + Ng
+ ai + R ln R

)
=

g

∑
i=0

Ni
(
Cpi ln T − R ln p + ai + R ln R

)
− R

g

∑
i=0

Ni ln
Ni

N0 + ... + Ng
.

If we compare this with (7.8), which applies to our gaseous mixture
also, we find that:

si = Cpi ln T − R ln p + ai + R ln R,

and

C
(

N0, N1, ..., Ng
)
= −R

g

∑
i=0

Ni ln
Ni

N0 + ... + Ng
. (7.10)

But the constant C
(

N0, N1, ..., Ng
)

does not depend on T or p. Its value
(7.10) therefore applies not only to the gaseous mixture, but also to the
original solution. Hence (7.8) becomes:

S =
g

∑
i=0

Nisi (T, p)− R
g

∑
i=0

Ni ln
Ni

N0 + N1 + ... + Ng
. (7.11)
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It is convenient to simplify the last term of (7.11) by taking the inequal-
ities (7.1) into account. By neglecting terms of an order higher than the
first in the small quantities N1, N2, ..., Ng, we find that:

N0 ln
N0

N0 + N1 + ... + Ng
= N0 ln

1

1 +
N1

N0
+ ... +

Ng

N0

= N0

(
−N1

N0
− N2

N0
− ...−

Ng

N0

)
= −N1 − N2 − ...− Ng,

and that:

Ni ln
Ni

N0 + N1 + ... + Ng
= Ni ln

Ni

N0
(for i ≥ 1).

Hence,

S = N0s0 (T, p) +
g

∑
i=1

Ni {si (T, p) + R} − R
g

∑
i=1

Ni ln
Ni

N0
.

Instead of the functions s, we now introduce the new functions:

σ0 (T, p) = s0 (T, p)
σ1 (T, p) = s1 (T, p) + R
σ2 (T, p) = s2 (T, p) + R

...
σg (T, p) = sg (T, p) + R

(7.12)

We have, then:

S =
g

∑
i=0

Niσi (T, p)− R
g

∑
i=1

Ni ln
Ni

N0
. (7.13)

(Notice the difference in the limits of the two summations.)
Although the quantities ui, vi, and σi are, strictly speaking, functions of

T and p, changes in these quantities resulting from variations in the pres-
sure are very small, in general, so that ui, vi, σi, for all practical purposes,
can be considered as being functions of T only.1

1To consider vi as being independent of p is equivalent to neglecting the small com-
pressibility of liquids. Similarly, ui is very nearly independent of p; indeed, if we com-
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In the theory of dilute solutions we shall always make use of these
approximations. We shall therefore write (7.4), (7.5), and (7.13) as follows:

U =
g

∑
i=0

Niui (T)

V =
g

∑
i=0

Nivi (T)

S =
g

∑
i=0

Niσi (T)− R
g

∑
i=1

Ni ln
Ni

N0
.

(7.14)

With these expressions for U, V, and S, we can immediately write
down the formulae for the free energy F and the thermodynamic potential
Φ (see equations (5.5) and (5.15)). We have:

F =
g

∑
i=0

Ni [ui (T)− Tσi (T)] + RT
g

∑
i=1

Ni ln
Ni

N0

=
g

∑
i=0

Ni fi (T) + RT
g

∑
i=1

Ni ln
Ni

N0
,

(7.15)

where
fi (T) = ui (T)− Tσi (T) ; (7.16)

and

Φ =
g

∑
i=0

Ni [ui (T)− Tσi (T) + pvi (T)] + RT
g

∑
i=1

Ni ln
Ni

N0

=
g

∑
i=0

Ni { fi (T) + pvi (T)}+ RT
g

∑
i=1

Ni ln
Ni

N0
.

(7.17)

press a liquid isothermally, we know from experiment that only a negligible amount of
heat is developed. The work also is negligible because of the small change in volume.
It follows, then, from the first law, that the variation in energy is very small. In order to
show that σi also is practically independent of p, we observe, with the aid of (7.12) and
(7.7), that:

∂σi
∂p

=
∂si
∂p

=
1
T

(
∂ui
∂p

+ p
∂vi
∂p

)
.

Since ui and vi are practically independent of p, the partial derivatives on the right-hand
side are negligible. Hence, (∂σi/∂p) is very small, and σi thus depends practically on T
alone.
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7.2 Osmotic pressure.

In dealing with solutions, we shall call a semipermeable membrane a mem-
brane that is permeable to the solvent and impermeable to the solutes.
Semipermeable membranes for aqueous solutions are often found in na-
ture. For example, the membranes of living cells are very often semiper-
meable. A very convenient artificial semipermeable membrane is a thin
layer of copper ferrocyanide imbedded in a wall of porous material.

When a solution is separated from a pure solvent by a semipermeable
membrane, a difference of pressure between the solution and the pure sol-
vent exists at equilibrium. This can be shown by the following simple
experiment.

Figure 7.1: Osmotic pressure.

Into a container with semipermeable walls we place a solution of sugar
in water. Through the top wall of the container we insert a vertical tube, as
shown in Figure 7.2, where the semipermeable walls of the container have
been indicated by dotted lines. The height of the meniscus in this tube
serves to indicate the pressure of the solution inside the container. We now
dip the container in a bath of pure water, and observe that the meniscus
inside the tube rises above the level of the water bath. This indicates that
some water has passed from the bath into the solution. Equilibrium is
reached when the meniscus in the tube is at a certain height h above the
level of the water bath, showing that the pressure in the solution is higher
than the pressure in the pure water. The difference in pressure is called the
osmotic pressure of the solution. If we neglect the small difference between
the density of water and the density of the solution, the osmotic pressure
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is equal to the pressure exerted by the liquid column h, and is given by the
product:

Height, h,×Density×Acceleration of Gravity.

Figure 7.2: Determining osmotic pressure.

To obtain the expression for osmotic pressure thermodynamically, we
make use of the general result that the work done by a system during an
isothermal reversible transformation is equal to minus the variation of the
free energy. We consider the system represented in Figure 7.2. A cylindri-
cal container is divided into two parts by a semipermeable membrane EF
parallel to the bases AB and CD of the container. The part of the container
on the left is filled with a solution composed of N0 moles of solvent and
N1, N2, ..., Ng moles of several dissolved substances. The right-hand part
of the container is completely filled with N′0 moles of pure solvent.

Since the membrane separating the two parts of the container is perme-
able to the pure solvent, there will be a flow of the pure solvent through
the membrane in both directions. When these two flows become equal,
the system will be in equilibrium, and there will then be a difference of
pressure between the left-hand part of the container and the right-hand
part. This difference of pressure P is equal to the osmotic pressure.

We assume now that the semipermeable membrane is movable, and
we consider a infinitesimal transformation of our system during which
the membrane is shifted an infinitesimal distance toward the right, so that
the volume on the left increases by an amount dV and the volume on the
right decreases by the same amount. Since the pressure exerted on the left
face of the membrane by the solution is larger by an amount P than the
pressure exerted on the right face of the membrane by the pure solvent,
the work done by the system is PdV.

During the motion of the membrane, a certain amount (dN0 moles) of
the solvent flows from the right-hand side of the container into the solu-
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tion on the left-hand side, thus diluting the solution. The volumes V and
V′ of the solution and the pure solvent, respectively, prior to the transfor-
mation are, accordingly to the second of equations (7.14):

V = N0v0 + N1v1 + ... + Ngvg

V′ = N′0v0.
(7.18)

If N0 increases by an amount dN0, we have from the first equation2:

dV = v0dN0;

and the work done by the system is, therefore,

PV0dN0. (7.19)

The free energy of the solution is given by (7.15), and is equal to:

N0 f0 + N1 f1 + ... + Ng fg + RT
(

N1 ln
N1

N0
+ ... + Ng ln

Ng

N0

)
.

The free energy of the pure solvent is obtained from this formula by re-
placing N0 by N′0 and putting N1 = N2 = ... = Ng = 0. This gives:

N′0 f0.

The total free energy of our system is equal to the sum of these two:

F =
(

N0 + N′0
)

f0 + N1 f1 + ... + Ng fg + RT
g

∑
i=1

Ni ln
Ni

N0
.

Since N0 and N′0 change by amounts dN0 and −dN0, respectively, as a
result of the transformation, the variation in F is given by

dF =
∂F

∂N0
dN0 −

∂F
∂N′0

dN0

=

{
f0 −

RT
N0

g

∑
i=1

Ni

}
dN0 − f0dN0

= −RT
N0

dN0

g

∑
i=1

Ni.

2Since N′0 decreases by an amount dN0, we have dV′ = −v0dN0, so that the total
volume remains unchanged.
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The negative of this quantity must be equal to the work (7.19) because the
transformation is reversible. Thus:

Pv0dN0 =
RT
N0

dN0

g

∑
i=1

Ni,

or

Pv0N0 = RT
g

∑
i=1

Ni. (7.20)

N0v0, which is the volume occupied by N0 moles of pure solvent, dif-
fers very little from the volume V of the dilute solution (see(7.1) and the
first equations (7.18)). Neglecting this small difference3 and by replacing
N0v0 by V in (7.20), we obtain:

PV = RT
g

∑
i=1

Ni (7.21)

or

P =
RT
V
(

N1 + N2 + ... + Ng
)

. (7.22)

The above expression for the osmotic pressure of a solution bears a
very close resemblance to the equation of state of a gas. Equation (7.22)
can be stated as follows:

The osmotic pressure of a dilute solution is equal to the pressure exerted by an
ideal gas at the same temperature and occupying the same volume as the solution
and containing a number of moles equal to the number of moles of the solutes
dissolved in the solution.

This simple thermodynamical result can be easily interpreted from the
point of view of the kinetic theory. We consider a container divided into
two parts by a semipermeable membrane with pure solvent in each part.
Since the solvent can pass freely through the semipermeable membrane,
the pressure on both sides of the membrane will be the same. Now let us
dissolve some substance in one part and not in the other. Then the pres-
sure on the side of the membrane facing the solution will be increased by
the impacts against it of the molecules of the dissolved substance, which
cannot pass through the membrane and which move about with a velocity
that depends on T. The larger the number of molecules dissolved and the

3It is immediately seen that this approximation consists in disregarding terms con-
taining the squares of the concentrations of the solutes, and is therefore consistent with
all the approximations already made in the theory of dilute solutions.
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higher the temperature, the larger will be the number of impacts per unit
time and, hence, the greater the osmotic pressure.

It can be shown from kinetic theory that the velocities of the molecules
of the dissolved substances are not affected by the molecules’ being in so-
lution, but are equal to the velocities that they would have if they were in
a gaseous state. Therefore, both the number and the intensity of the im-
pacts of the molecules of the dissolved substances against the membrane
are equal to the number and intensity of the impacts that one expects for a
gas. The pressures exerted in both cases are therefore equal.

In order to calculate the osmotic pressure with the aid of (7.22), it is
necessary to know the total number of moles of the dissolved substances
in the solution. If no chemical change takes place in the solutes as a result
of their being in solution, this number can be calculated immediately from
the knowledge of the molecular weights of the solutes and the percent-
age by weight of these substances present in the solution. For example, a
normal solution, that is, a solution containing 1 mole of solute per liter of
water, has, at 15◦C, an osmotic pressure:

Pnormal =
R× 288.1

1000
= 2.4× 107 dynes

cm2 = 23.7 atm

In many cases, however, a chemical transformation takes place when a
substance is dissolved, so that the number of moles of the substance in the
solution need not be the same as the number of moles before the substance
is dissolved. The most important example of this is that of an electrolyte
dissolved in water. When, for example, NaCl is dissolved in water, almost
all the NaCl molecules dissociate into Na+ and Cl− ions. The number of
molecules in the solution is thus about twice the number one would expect
to find if no dissociation occurred. Some electrolytes, of course, dissociate
into more than two ions. For strong electrolytes, the dissociation is prac-
tically complete even when the solution is not very dilute. For the case of
weak electrolytes, on the other hand, chemical equilibrium sets in between
the dissociation of the electrolyte into ions and the recombination of these
ions. The dissociation in this case, therefore, is generally incomplete.

7.3 Chemical equilibria in solutions.

We have already seen that the law of mass action (6.2) applies to chemical
reactions taking place in gaseous systems. We shall now derive a corre-
sponding law for chemical reactions occurring in solutions.
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Let A0 represent a molecule of the solvent and A1, ..., Ar and B1, ..., Bs
represent the molecules of the solutes. We assume that a chemical reaction
defined by the equation:

n0A0 + n1A1 + ... + nr Ar 
 m1B1 + ... + msBs (7.23)

can take place among these substances. If n0 6= 0, the solvent also takes
part in the reaction; whereas if n0 = 0, only the solutes react among them-
selves.

Just as in Section 6.3, we shall require that when chemical equilibrium
is reached, the free energy shall be a minimum.4 The free energy of the
solution is given, according to (7.15), by:

F = f0N0 +
r

∑
i=1

fiNi +
s

∑
j=1

f ′j N′j +RT

{
r

∑
i=1

Ni ln
Ni

N0
+

s

∑
j=1

N′j ln
N′j
N0

}
, (7.24)

where fi and f ′i are the functions of T for the dissolved substances Ai
and Bi which corresponds to the functions f1, ..., fg appearing in equa-
tion (7.15), and N0, Ni, and Nj are the numbers of moles of the solvent and
the dissolved substances Ai and Bj, respectively.

Just as in Section 6.3, we now consider an infinitesimal isothermal re-
action of the type (7.23) as a result of which N0, N1, ..., Nr and N′1, ..., N′s
changed by the amounts:

−εn0,−εn1, ...,−εnr; εm1, ..., εms,

respectively, where ε is an infinitesimal constant of proportionality. Since
F is a minimum at equilibrium, its variation must vanish when the system
is in a state of equilibrium. We thus have:

δF = −εn0
∂F

∂N0
− ε

r

∑
i=1

ni
∂F
∂Ni

+ ε
s

∑
j=1

mj
∂F

∂N′j
= 0.

Dividing by ε and calculating the derivatives with the aid of equation
(7.24) (the f ’s are functions of T only and therefore do not vary during an
isothermal transformation), we find, on neglecting all terms proportional
to the small quantities Ni/N0 and N′j /N0:

0 = −n0 f0 −
r

∑
i=1

ni

{
fi + RT + RT ln

Ni

N0

}
+

s

∑
j=1

mj

{
f ′i + RT + RT ln

N′j
N0

}
4Since the variations in volume of a solution are always very small, it is immaterial

whether we consider the equilibrium condition at constant volume or at constant pres-
sure.
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or

ln

(
N1

N0

)n1
(

N2

N0

)n2

...
(

Nr

N0

)nr

(
N′1
N0

)m1 (N′2
N0

)m2

...
(

N′s
N0

)ms

=

s

∑
j=1

mj

(
f ′j + RT

)
−

s

∑
i=1

ni ( fi + RT)− n0 f0

RT
.

The right-hand side of this equation is a function of T only. If we place
it equal to ln K (T), K being a convenient function of the temperature, we
finally obtain: (

N1

N0

)n1

...
(

Nr

N0

)nr

(
N′1
N0

)m1

...
(

N′s
N0

)ms
= K (T) . (7.25)

This equation is the expression for the law of mass action for chemical
equilibria in solutions.

The discussion of (7.25) for the case where the solvent does not take
part in the reaction (that is, when n0 = 0 in (7.23)) is the same as the dis-
cussion of the law of mass action for gases (see Section 6.4). It follows,
in particular, from equation (7.25) that if we dilute the solution, the equi-
librium is shifted in the direction of increasing dissociation. Of course,
in this case we have no simple way of determining the form of K (T), as
we did in the case of gases. We know only that K (T) is a function of the
temperature.

As a particularly important example in the case for which the solvent
participates in the chemical reaction, we consider the reaction:

H2O 
 H+ + OH−, (7.26)

that is, the dissociation of water into hydrogen and hydroxyl ions (the
hydrolysis of water). Let

[
H+
]

and
[
OH−

]
be the concentrations of the

hydrogen and the hydroxyl ions (numbers of moles per cc.). If we consider
a cubic centimeter of water, we have N0 = 1

18 . Hence, the ratios of the
number of moles of

[
H+
]

and
[
OH−

]
to the number of moles of water

are, respectively, 18
[
H+
]

and 18
[
OH−

]
. Applying equation (7.25) to the

reaction (7.26), we thus find:

1
182

[
H+
] [

OH−
] = K (T) ,
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or [
H+
] [

OH−
]
=

1
182K (T)

= K′ (T) , (7.27)

We see from this equation that the product of the concentrations of the
hydrogen and the hydroxyl ions in water is a constant when the temper-
ature is constant.5 At room temperature, this product is approximately
equal to 10−14 when the concentrations are expressed in moles per liter;
that is, [

H+
] [

OH−
]
= 10−14. (7.28)

In pure water, the concentrations of H+ and OH− are equal, so that for
this case we have from (7.28):[

H+
]
=
[
OH−

]
= 10−7.

If we add some acid to the water, there is an increase of
[
H+
]
, and,

since the product (7.28) must remain constant, a corresponding decrease
of
[
OH−

]
.

The opposite occurs if a base is added to the water. It is usual to indi-
cate the acidity of a water solution by the symbol:

pH = − log
[
H+
]

. (7.29)

(log stands for the logarithm to the base 10;
[
H+
]

is expressed as before in
moles per liter.) Thus, pH = 7 means a neutral reaction; pH < 7 indicates
acidity; and pH > 7 indicates a basic reaction.

The above discussion of chemical equilibria in solutions is incomplete,
since no account has been taken to the electrostatic forces between ions. It
has been shown by Debye and Hückel that such forces are often of impor-
tance and may affect the chemical reaction considerably. A discussion of
this point, however, lies beyond the scope of this book.

7.4 The distribution of a solute between two phases.

Let A and B be two immiscible liquids (as, for example, water and ethyl
ether) in contact. Let C be a third substance soluble in both A and B. If

5From the law of mass action applied to the reaction (7.27), one would expect the
ratio

[
H+
] [

OH−
]

/ [H2O] to be a function of T only. Since the denominator is practically
constant, however, the numerator also must be a function of T only in accordance with
equation (7.27). We see thus that (7.27) is essentially equivalent to the law of mass action
in its usual form.
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we dissolve a certain amount of C in the liquid A, the substance C diffuses
through the surface that separates A and B; and after a short time, C will
be in solution in both liquids. The concentration of C in A will decrease
until equilibrium is reached between the two solutions.

Let NA and NB be the numbers of moles of the two solvents A and B,
and let N1 and N′1 be the numbers of moles of the solute C dissolved in A
and B, respectively. The thermodynamic potential, Φ, of our system will
be the sum of the potentials of the two solutions.

We have first a solution of N1 moles of C dissolved in NA moles of
the liquid A. The thermodynamic potential at constant pressure of this
solution is, according to (7.17):

ΦA = NA { fA (T) + pvA (T)}+ N1 { f1 (T) + pv1 (T)}+ RTN1 ln
N1

NA
,

(7.30)
where fA, f1, vA, and v1 correspond to f0, f1, v0, and v1 of the general
formula (7.17).

Second, we have a solution which contains NB moles of the solvent B
and N′1 moles of the solute C. Its thermodynamic potential is given by:

ΦB = NB { fB (T) + pvB (T)}+ N′1
{

f ′1 (T) + pv′1 (T)
}
+ RTN′1 ln

N′1
NB

,

(7.31)
where the quantities fB, f ′1, vB, and v′1 corresponding to f0, f1, v0, and v1
of (7.17).

The thermodynamic potential Φ of the complete system is:

Φ = ΦA + ΦB. (7.32)

For a given temperature and pressure, the equilibrium condition is that Φ
be a minimum.

We consider an infinitesimal transformation of our system as a result
of which an amount dN1 of C passes from the liquid B into the liquid A.
N1 and N′1 will change by amounts dN1 and −dN1, respectively, and the
variation in Φ will be given by:

dN1
∂Φ
∂N1
− dN1

∂Φ
∂N′1

.

If Φ is to be a minimum, this expression must vanish. Dividing by dN, we
thus obtain the equation:

∂Φ
∂N1

=
∂Φ
∂N′1

. (7.33)
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Using (7.32), (7.31), and (7.30), we obtain an equilibrium condition:

f1 (T) + pv1 (T) + RT ln
N1

NA
+ RT = f ′1 (T) + pv′1 (T) + RT ln

N′1
NB

+ RT,

or
N1

NA
N′1
N′B

= e
f ′1 (T)− f1 (T) + p [v′1 (T)− v1 (T)]

RT = K (T, p) , (7.34)

where the function K (T, p) depends only on the temperature and pressure
and not on the concentrations.

Equation (7.34) expresses the following law:
When two dilute solutions of the same solute in two different immiscible sol-

vents are in contact and in equilibrium, the ratio of the concentrations of the two
solutions at a given temperature and pressure is constant.

A problem analogous to the preceding one is the following:
A solution of a gas dissolved in a liquid is in contact with the gas itself;

to find the relationship between the pressure of the gas and the concen-
tration of the solution foe which the system is in equilibrium at a given
temperature.

Let N0 and N1 be the numbers of moles of the liquid solvent and the
gaseous solute in the solution, respectively; and let N′1 be the number of
moles of gas in the gaseous phase. Since variations in volume of the so-
lution are practically negligible as compared with variations in volume of
the gaseous phase, we can neglect the term pV in the expression for the
thermodynamic potential of the solution and identify this potential with
the free energy of the solution. According to (7.15), this is:

N0 f0 (T) + N1 f1 (T) + RTN1 ln
N1

N0
. (7.35)

The thermodynamic potential of the gaseous phase is obtained from
(5.19) by multiplying it by the number, N′1, of moles of gas:

N′1
[
CpT + W − T

(
Cp ln T − R ln p + a + R ln R

)]
. (7.36)

Adding (7.35) and (7.36), we obtain the thermodynamic potential Φ of
the total system. Just as in the preceding problem, we obtain equation
(7.33) as the condition for equilibrium. Substituting the explicit expres-
sions for the derivatives in (7.33), we obtain as the condition for equilib-
rium the following equation:

f1 (T) + RT ln
N1

N0
+ RT = CpT + W − T

(
Cp ln T − R ln p + a + R ln R

)
;

115



or, dividing by RT and passing from logarithms to numbers, we find that:

1
p

N1

N0
= e

CpT + W − T
(
Cp ln T + a + R ln R

)
− f1 (T)− RT

RT

= K (T) ,

(7.37)

where K (T) is a function of the temperature alone.
Equation (7.37) expresses the following law:
The concentration of a solution of a gas dissolved in a liquid at a given tem-

perature is proportional to the pressure of the gas above the solution.
It can be proved in a similar fashion that if there is a mixture of several

gases above a liquid, the concentration of each gas in solution is propor-
tional to its partial pressure in the mixture above the liquid. The constant
of proportionality in each vase depends on the temperature as well as on
the nature of the solvent and of the particular gas considered.

7.5 The vapor pressure, the boiling point, and
the freezing point of a solution.

The vapor pressure, the boiling point, and the freezing point for a solu-
tion are not the same as for the pure solvent. This fact is very important
from a practical point of view, because, as we shall show in this section,
the changes in the boiling and freezing points, at least for dilute solutions,
are proportional to the molecular concentrations of the solutes. The obser-
vation for these changes affords, therefore, a very convenient method of
determining the molecular concentration of the solution.

We shall assume that the solutes are nonvolatile. In that case, the vapor
of the solution will contain only pure vaporized solvent. We shall assume
further that, when the solution freezes, only the pure solidified solvent
separates out, leaving all the solute still in solution.

We can now show, from very simple considerations, that the vapor
pressure for a solution at a given temperature is lower than that for the
pure solvent at the same temperature. To this end, we consider the ap-
paratus shown in Figure 7.5. It consists of a rectangular-shaped tube in
which the pure solvent and the solution are separated from each other on
the lower side by a semipermeable membrane at B. The levels A and C
of the pure solvent and the solution, respectively, will not e at the same
height because of the osmotic pressure; the level C of the solution will be
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Figure 7.3: Colligative properties of a solution.

higher. Since the dissolved substance is non-volatile, the region in the tube
above A and C will be filled with the vapor of the pure solvent only.

We first wait until equilibrium is established; the vapor pressure in the
immediate neighborhood of the meniscus A will then be that of a saturated
vapor in equilibrium with its liquid phase, and the vapor pressure at C will
be that of a saturated vapor in equilibrium with a solution. It is evident
that the pressures at A and at C are not equal, since A and C are at different
heights in the vapor. Since C lies higher than A, the vapor pressure at C is
lower than that at A; that is, the pressure of the vapor above the solution
is lower than the vapor pressure above the pure solvent. To calculate this
difference in pressure, ∆p, quantitatively, we notice that it is equal to the
pressure exerted by a column of vapor of height h. If ρ′ is the density of
the vapor, and g is the acceleration of gravity, we have:

∆p = ρ′hg.

On the other hand, the pressure exerted by the liquid column CD is
equal to the osmotic pressure P of the solution. If ρ is the density of the
pure solvent, we have for the osmotic pressure (neglecting the difference
between the density of the solution and that of the pure solvent, and also
neglecting the density of the vapor as compared to that of the liquid):

P = ρhg.

Dividing the first equation by the second, we obtain:

∆p
P

=
ρ′

ρ
,
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or

∆p = P
ρ′

ρ
= P

v0

v′0
,

where v0 and v′0 are the volumes occupied by one mole of the pure sol-
vent in the liquid phase and in the vapor phase, respectively (that is, v0
and v′0 are inversely proportional to ρ and ρ′, respectively). Replacing the
osmotic pressure P by the expression (7.21), and assuming, for the sake of
simplicity, that there is only one solute present in the solution, we obtain:

∆p =
RT
v′0

N1

N0
, (7.38)

which is the expression for the difference between the vapor pressure of
the solution and that of the pure solvent.

The fact that the vapor pressure for a solution is lower than that for
the pure solvent is directly related to the fact that the boiling point of a
solution is higher than that of the pure solvent. The reason for this is that
the boiling point is the temperature at which the vapor pressure is equal
to one atmosphere. Consider a pure solvent at the boiling point; its vapor
pressure is equal to one atmosphere. If we now dissolve some substance
in this solvent, keeping the temperature constant, the vapor pressure will
fall below one atmosphere. Hence, in order to bring the pressure back
to its original value of one atmosphere, we must raise the temperature of
the solution. With the aid of equation (7.38) and Clapeyron’s equation,
one can easily derive an expression for the variation of the boiling point
of a solution. Instead of doing this, however, we shall calculate both the
decrease in the vapor pressure and the increase in the boiling point of a
solution by a direct method.

We consider a dilute solution composed of N0 moles of solvent and N1
moles of a solute in equilibrium with the vapor of the pure solvent. Let
N′0 be the number of moles of solvent contained in the vapor phase. From
(7.4), (7.5), (7.11), and (5.15), we obtain for the thermodynamic potential
Φsol of the solution:

Φsol = N0ϕ0 (T, p) + N1ϕ1 (T, p) + RTN1 ln
N1

N0
,

where

ϕ0 (T, p) = u0 − Tσ0 + pv0, and ϕ1 = u1 − Tσ1 + pv1.

Let ϕ′0 (T, p) be the thermodynamic potential of one mole of vapor of
the solvent. The thermodynamic potential of the N′0 moles of the vapor
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phase is, then:
Φvap = N′0ϕ′0 (T, p) ;

and the thermodynamic potential of the total system is:

Φ = Φsol +Φvap = N0ϕ0 (T, p)+ N1ϕ0 (T, p)+RTN1 ln
N1

N0
+ N′0ϕ′0 (T, p) .

(7.39)
The equilibrium condition is that Φ be a minimum at constant temper-

ature and pressure. We must therefore have dΦ = 0 for an infinitesimal,
isothermal, isobaric transformation. If dN0 moles of the solvent are trans-
ferred from the vapor phase to the solution as a result of such a transfor-
mation (that is, if N0 and N′0 vary by the amounts dN0 and −dN0, respec-
tively), then we must have:

dΦ = dN0
∂Φ
∂N0
− dN0

∂Φ
∂N′0

= 0,

or
∂Φ
∂N0

=
∂Φ
∂N′0

.

Replacing the derivatives in this equation by their explicit expressions
as calculated from (7.39), we obtain:

ϕ0 (T, p)− RT
N1

N0
= ϕ′0 (T, p) ,

or

ϕ0 (T, p)− ϕ′0 (T, p) = RT
N1

N0
. (7.40)

This equation expresses the relationship between the temperature and the
vapor pressure of our solution.

Let p0 be the pressure of the saturated vapor of the pure solvent at the
temperature T. T and p0 will satisfy equation (7.40) if we place N1 = 0 in
that equation, because in that case no solute is present. Thus:

ϕ0 (T, p0)− ϕ′0 (T, p0) = 0. (7.41)

When N1 moles of solute are dissolved in the solvent, the pressure p of
the vapor pressure becomes:

p = p0 + ∆p,
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where ∆p is a small quantity. Expanding the left-hand side of (7.40), in
powers of ∆p up to terms of the first order, we find that:

RT
N1

N2
= ϕ0 (T, p0)− ϕ′0 (T, p0) + ∆p

{
∂ϕ0 (T, p0)

∂p0
− ∂ϕ′0 (T, p0)

∂p0

}
= ∆p

{
∂ϕ0 (T, p0)

∂p0
− ∂ϕ′0 (T, p0)

∂p0

}
.

(7.42)

Since ϕ0 is the thermodynamic potential of one mole of pure solvent, we
obtain from (5.17):

∂ϕ0 (T, p0)

∂p0
= v0,

where v0 is the volume of one mole of the solvent; and, similarly,

∂ϕ′0 (T, p0)

∂p0
= v′0,

where v′0 is the volume of one mole of vapor of the pure solvent. Substi-
tuting these expressions in (7.42), we have:

∆p = − RT
v′0 − v0

N1

N0
. (7.43)

Since the volume, v′0 of one mole of vapor is larger than the volume, v0,
of one mole of liquid solvent, ∆p is negative; this means that the pressure
of the vapor of the solution is lower than that of the pure solvent. If v0
is negligible as compared to v′0, which we assumed to be the case in the
derivation of equation (7.38), equation (7.43) becomes identical with (7.38).
(The minus sign means that the vapor pressure of the solution is lower
than that of the pure solvent.)

We have deduced the expression for the decrease in the vapor pressure
from equation (7.40). With the aid of the same equation and by a method
analogous to the one just used, we can also calculate the change in the
boiling point of a solution.

We consider a solution whose temperature is such that the pressure p
of its vapor is equal to one atmosphere. Let T0 be the boiling point of the
pure solvent and T = T0 + ∆T the boiling point of the solution. Since the
vapor pressure at the boiling point is equal to the atmospheric pressure,
p, it follows that the vapor pressure of the pure solvent at the temperature
T0 is equal to p. Since N1 = 0 for the pure solvent, we find, with the aid of
(7.40), that:

ϕ0 (T0, p)− ϕ′0 (T0, p) = 0. (7.44)
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Applying (7.40) to the solution, we obtain:

ϕ0 (T0 + ∆T, p)− ϕ′0 (T0 + ∆T, p) = RT
N1

N0
.

Developing the left-hand side of the preceding equation in powers of
∆T, and dropping all terms above the first, we obtain, with the aid of
(7.44), the following equation:

∆T
{

∂ϕ0 (T0, p)
∂T0

− ∂ϕ′0 (T0, p)
∂T0

}
= RT0

N1

N0
.

From (5.18) we have:

∂ϕ0 (T0, p)
∂T0

= −σ0;
∂ϕ′0 (T0, p)

∂T0
= −σ′0,

where σ0 and σ′0 are the entropies of one mole of solvent in the liquid and
vapor phases, respectively. From the preceding two equations, we now
obtain:

∆T
{

σ′0 − σ0
}
= RT0

N1

N0
. (7.45)

Let Λ be the heat of vaporization of one mole of solvent. If we permit
one mole of the solvent to vaporize at the boiling point, T0, the amount of

heat absorbed is Λ, and
Λ
T0

is the change in entropy. Hence,

σ′0 − σ0 =
Λ
T0

.

Substituting this in equation (7.45), we obtain:

∆T =
RT2

0
λ

N1

N0
. (7.46)

This is the expression for the difference between the boiling point of
the solution and the boiling point of the pure solvent. Since ∆T > 0, the
boiling point of the solution is higher than that of the pure solvent. We see
also from the equation that the change in the boiling point is proportional
to the molecular concentration of the solution.

As an example, we shall apply the above equation to a normal solution
of some substance in water. For such a solution, we have:

N1 = 1; N0 =
1000

18
; Λ = 540× 18 calories;
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R = 1.986 calories; T0 = 373.1 K.

(We can express both R and Λ in calories in equation (7.46) because their
ratio is obviously dimensionless.) Substituting these values in equation
(7.46), we find that:

∆T = 0.51 K.

The same formula (7.46) can also be used to calculate the change in
the freezing point of a solution. The only difference is that, instead of
having a vapor phase, we have a solid phase. Λ in that case represents
the heat absorbed by one mole of the solvent in passing isothermally from
the liquid to the solid state at the freezing point. This heat is negative and
equal to−Λ′, where Λ′ is the heat of fusion of one mole of the solvent. For
the case of freezing, (7.46) becomes, therefore,

∆T = −
RT2

0
Λ′

N1

N0
. (7.47)

From this equation we see that the freezing point of a solution is lower
than that of the pure solvent; the decrease is proportional to the molecular
concentration of the solution.

In the case of a normal solution in water, for which

N1 = 1; N0 =
1000
18

; Λ′ = 80× 18 calories;

R = 1.986 calories; T0 = 273.1 K,

we find that:
∆T = −1.85 K.

It should be noticed that in all these formulae N1 represents the actual
number of moles of substance present in the solution. For electrolytic solu-
tions, therefore, each ion must be considered as an independent molecule.
Thus, for the case of very strong electrolytes (having a high degree of dis-
sociation), N1 is obtained by multiplying the number of moles of solute by
the number of ions into which a single molecule of the solute dissociates
when in solution.

Problems

1. Calculate the osmotic pressure and the variation in the boiling and
freezing points of a solution containing 30 grams of NaCl per liter of
water.
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2. A solution of sugar (C6H12O6) in water and a solution of NaCl in
water have the same volume and the same osmotic pressure. Find
the ratio of the weights of sugar and of sodium chloride.

3. Discuss with the aid of the phase rule of equilibrium of a solution
and the vapor of the solvent.

4. The concentration of a saturated solution (the ratio of the number of
moles of the solute to the number of moles of the solvent) is a func-
tion of the temperature. Express the logarithmic derivative of this
function in terms of the temperature and the heat of solution. (As-
sume that the laws of dilute solutions can be applied also to the sat-
urated solution. The formula can be obtained by applying a method
analogous to that used for deriving Clapeyron’s equation.)
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Chapter 8

The Entropy Constant

8.1 The Nernst theorem.

We have already seen that the definition of the entropy given by (4.8):

S (A) =
∫ A

0

dQ
T

,

where O is an arbitrarily chosen initial state, is incomplete because the
arbitrariness in the choice of the initial state introduces an undetermined
additive constant in the definition. As long as we deal only with the dif-
ferences of the entropy, this incompleteness is of no consequence. We have
already found, however, that cases arise (for example, in dealing with
gaseous equilibria, Chapter 6) for which the knowledge of this constant
becomes important. In this chapter we shall introduce and discuss a prin-
ciple that will enable us to determine the additive constant appearing in
the definition of entropy. This principle, which was discovered by Nernst,
is often referred to as the third law of thermodynamics or as Nernst’s theorem.

In the form in which it was originally stated by Nernst, this theorem
applied only to condensed systems, but it has since then been extended to
apply to gaseous systems also. We may state this theorem in the following
form:

The entropy of every system at absolute zero can always be taken equal to zero.
Since we have defined only differences of entropy between any two

states of a system, the above statement of Nernst’s theorem must be in-
terpreted physically as meaning that all possible states of a system at the
temperature T = 0 have the same entropy. It is therefore obviously con-
venient to choose one of the states of the system at T = 0 as the standard
state O introduced in Section 4.2; this will permit us to set the entropy of
the standard state equal to zero.
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The entropy of any state A of the system is now defined, including the
additive constant, by the integral:

S (A) =
∫ A

T=0

dQ
T

, (8.1)

where the integral is taken along a reversible transformation from any
state at T = 0 (lower limit) to the state A.

In this book we shall assume Nernst’s theorem as a postulate; a few
words concerning its theoretical basis, however will serve to demonstrate
its plausibility.

We have seen that a thermodynamical state of a system is not a sharply
defined state of the system, because it corresponds to a large number of
dynamical states. This consideration led to the Boltzmann relation (4.15):

S = k ln π,

where π is called the probability of the state. Strictly speaking, π is not the
probability of the state, but is actually the number of dynamical states that
corresponds to the given thermodynamical state. This seems at first sight
to give rise to a serious difficulty, since a given thermodynamical state
corresponds to an infinite number of dynamical states. This difficulties is
avoided in classical statistical mechanics by the following device:

The dynamical states of a system form an ∞2 f array where f is the
number of degrees of freedom of the system; each state can therefore be
represented by a point in a 2 f -dimensional space, which is called the phase
space of the system. Instead of an exact representation of the dynamical
state, however, which could be given by designating the precise position
in the phase space of the point representing the state, the following ap-
proximate representation is introduced:

The phase space is divided into a number of very small cells all of
which have the same hyper-volume τ; the state is then characterized by
specifying the cell to which the point representing the state belongs. Thus,
states whose representative points all lie in the small cell are not consid-
ered as being different. This representation of the state of a system would
evidently become exact if the cells were made infinitesimal.

The cell representation of the dynamical states of a system introduced
a discontinuity in the concept of the state of a system which enables us to
calculate π by the methods of combinatory analysis, and, hence, with the
aid of the Boltzmann relation, to give a statistical definition of the entropy.
It should be noticed, however, that the value of π, and therefore the value
of the entropy also, depends on the arbitrarily chosen size of the cells; in-
deed, one finds that, if the volume of the cells is made vanishingly small,
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both π and S become infinite. It can be shown, however, that if we change
τ, π is altered by a factor. But from the Boltzmann relation, S = k ln π,
it follows that an undetermined factor in π gives rise to an undetermined
additive constant in S. We see from the foregoing considerations that the
classical statistical mechanics cannot lead to a determination of the en-
tropy constant.

The arbitrariness associated with π, and therefore with the entropy
also, in the classical picture can be removed by making use of the princi-
ples of the quantum theory. The reason for this is that the quantum theory
introduces a discontinuity quite naturally into the definition of the dy-
namical state of a system (the discrete quantum states) without having to
make use of the arbitrary division of the phase space into cells. It can be
shown that this discontinuity is equivalent, for statistical purposes, to the
division of the phase space into cells having a hyper-volume equal to h f ,
where h is Planck’s constant (h = 6.55× 10−27 cm2 gm sec−1) and f is the
number of degrees of freedom of the system. We may note here, without
entering into the details, which lie outside the scope of this book, that in a
statistical theory based consistently on the quantum theory all indetermi-
nacy in the definition of π, and therefore in the definition of the entropy
also, disappears.

According to the Boltzmann relation, the value of pi which corresponds
to S = 0 is π = 1. Statistically interpreted, therefore, Nernst’s theorem
states that to the thermodynamical state of a system at absolute zero there cor-
responds only one dynamical state, namely, the dynamical state of lowest energy
compatible with the given crystalline structure or state of aggregation of the sys-
tem.

The only circumstances under which Nernst’s theorem might be in er-
ror are those for which there exist many dynamical states of lowest energy.
But even in this case, the number of such states must be enormously large1

if deviations from the theorem are to be appreciable. Although it is not
theoretically impossible to conceive of such a system, it seems extremely
unlikely that such systems actually exists in nature. We may therefore as-
sume that Nernst’s theorem is generally valid.

We shall now develop some of the consequences of Nernst’s theorem.

1Of the order of eN , where N is the number of molecules in the system.
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8.2 Nernst’s theorem applied to solids.

We consider a solid body which is heated (at constant pressure, for ex-
ample) until its temperature increases from the absolute zero to a certain
value, T. Let C (T) be its thermal capacity (at constant pressure) when its
temperature is T. Then, if the temperature changes by an amount dT, the
body will absorb an amount of heat dQ = C (T) dT. The entropy of the
body at the temperature T is therefore given (see equation (8.1)) by:

S =
∫ T

0

C (T)
T

dT. (8.2)

We can obtain the first consequence of Nernst’s theorem from equation
(8.2): we observe that if the thermal capacity, C (0), at absolute zero were
different from zero, the integral (8.2) would diverge at the lower limit. We
must therefore have:

C (0) = 0. (8.3)

This result is in agreement with the experiments on the specific heats of
solids.

Figure 8.1: Graph of C (T) against T for a solid.

We shall limit ourselves here, for the sake of simplicity, to the consid-
eration of solid chemical elements, and perform the calculations for one
gram atom of the element. Figure 8.2 is a graphical representation of the
general way in which the atomic heats of solids depend on the temper-
ature as found empirically. One can see from the figure that the atomic
heat actually vanishes at absolute zero. At higher temperature, C (T) ap-
proaches a limiting value which is very nearly the same for all solid ele-
ments and which lies very close to the value 3R. Since this limiting value
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is practically attained at room temperature, this result is an expression of
the well-known law of Dulong and Petit, which can be stated as follows:

All solid elements at room temperature have the same atomic heat, which is
equal to 3R (that is, the product: specific heat× atomic weight is the same for all
solids and is equal to 3R).

A theoretical formula for the specific heats of solid elements, which is
in good agreement with experiment, was derived by Debye on the basis of
the quantum theory. The Debye expression can be written in the form:

C (T) = 3RD
(

T
θ

)
, (8.4)

where θ is a characteristic constant of the substance, which has the dimen-
sions of a temperature; it is called the Debye temperature. D represents the
following function:

D (ξ) = 12ξ3
∫ 1/ξ

0

x3dx
ex − 1

−

3
ξ

e1/ξ − 1
. (8.5)

Since D (ξ) approaches the limit 1 for large values of ξ, it follows from
(8.4) that the atomic heat for high temperature tends to the limit 3R, as
required by the law of Dulong and Petit.

For small values of ξ, we may replace the upper limit of the integral
in (8.5) by infinity, and we may neglect the second term in the expres-
sion because that term becomes an infinitesimal of a very high order for
infinitesimal values of ξ. For ξ → 0, we therefore obtain:

D (ξ)→ 12ξ3
∫ ∞

0

x3dx
ex − 1

=
4π4

5
ξ3. (8.6)

From this asymptotic expression for D (ξ), we obtain the following ex-
pression for the atomic heat in the limit of low temperatures:

C (T) =
12π4

5
R
θ3 T3 + .... (8.7)

We see from this expression that at low temperatures the atomic heat is
proportional to the cube of the temperature. This consequence of the De-
bye theory is in good agreement with experiment.

Using the Debye formula, we can calculate the entropy of a gram atom
of our substance by substituting (8.4) in (8.2). On doing this, we find that:

S =
∫ T

0

C (T)
T

dT = 3R
∫ T

0
D
(

T
θ

)
dT
T

= 3R
∫ T/θ

0
D (ξ)

dξ

ξ
. (8.8)
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Replacing D (ξ) in (8.8) by its explicit expression, we find that2:

S = 3R
{

4
T3

θ3

∫ θ/T

0

x3dx
ex − 1

− ln
(

1− e−θ/T
)}

= 3R ln T + 4R− 3R ln θ + ...,
(8.9)

where the last formula is valid for T � θ, that is, in the range of tempera-
ture for which the law of Dulong and Petit holds.

With the aid of Nernst’s theorem, we shall now discuss the transfor-
mation of a solid from one crystalline form to another. As an example, we
shall consider the transformation from grey to white tin. Grey tin is the
stable form at low temperatures and white tin is stable at high tempera-
tures. The transition temperature, T0, is equal to 19◦C or 292 K.

The transformation of tin from one of these allotropic forms to the other
is analogous in many respects to the melting of a solid. Thus, for example,
a certain amount of heat is absorbed by the tin in passing from the grey to
the white form. This heat of transformation, Q, is equal to 535 calories per
gram-atom at the transition temperature.

Although grey tin is the stable form below the transition temperature,
white tin can exist in a labile form down to the lowest temperatures. It
is therefore possible to measure the specific heats of both grey and white
tin all the way from the lowest temperatures to the transition tempera-
ture. The atomic heats of the two forms are not equal; the atomic heat of
grey tin at a given temperature is less than that of white tin at the same
temperature.

2The following integral formulae are used:

∫ ω

0
D (ξ)

dξ

ξ
= 12

∫ ω

0
ξ2dξ

∫ 1/ξ

0

x3dx
ex − 1

− 3
∫ ω

0

dξ

ξ

e1/ξ − 1
,

or, interchanging the order of integration in the double integral, and introducing 1/ξ as
a new variable in the second integral, we obtain:∫ ω

0
D (ξ)

dξ

ξ
= 12

∫ 1/ω

0

x3dx
ex − 1

∫ ω

0
ξ2dξ + 12

∫ ∞

1/ω

x3dx
ex − 1

∫ 1/x

0
ξ2dξ − 3

∫ ∞

1/ω

dx
ex − 1

= 4ω3
∫ 1/ω

0

x3dx
ex − 1

− ln
(

1− e−1/ω
)

.

For large values of ω, we obtain the following asymptotic expression:∫ ω

0
D (ξ)

dξ

ξ
=

4
3
+ ln ω + ....
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The transformation from white to grey tin is nonreversible at tempera-
tures below the transition temperature (since the grey form is stable below
the transition temperature, a spontaneous transformation can occur only
from the white to the grey form). At the transition temperature, however,
the transformation between the two forms is reversible.

If S1 (T0) and S2 (T0) are the entropies at the transition temperature of
one gram-atom of grey and white tin, respectively, then, applying (4.9)
to the reversible, isothermal transformation from grey to white tin, we
obtain:

S2 (T0)− S1 (T0) =
∫ white

grey

dQ
T0

=
Q
T0

. (8.10)

If we indicate the atomic heats of grey and white tin by C1 (T) and C2 (T),
respectively, we can express S1 (T0) and S2 (T0), with the aid of equation
(8.2), as follows:

S1 (T0) =
∫ T0

0

C1 (T)
T

dT; S2 (T0) =
∫ T0

0

C2 (T)
T

dT. (8.11)

We thus obtain from (8.10) the equation:

Q = T0

{∫ T0

0

C2 (T)
T

dT −
∫ T0

0

C1 (T)
T

dT
}

, (8.12)

which expresses the heat of transformation, Q, of the process in terms of
the transition temperature T0 and the atomic heats of the two forms of tin.

In order to test the validity of equation (8.12), we shall perform the two
integrations indicated numerically. The results of the numerical integra-
tions are: ∫ T0

0

C2 (T)
T

dT = 12.30
cal
K

;

∫ T0

0

C1 (T)
T

dT = 10.53
cal
K

.

Since T0 = 292, we obtain from (8.12):

Q = 292 (12.30− 10.53) = 517 cal

The good agreement between this value and the experimental value,
Q = 535 calories, can be taken as strong evidence in support of Nernst’s
theorem. The small difference between the two vales can be accounted for
by the experimental errors.
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8.3 The entropy constant of gases.

In Section 4.4 we calculated the entropy of one mole of an ideal gas (see
equation (4.26)) and found that:

S = CV ln T + R ln V + a.

The undetermined additive constant a which appears in this expression is
called the entropy constant of the gas.

If we could apply Nernst’s theorem directly to the formula (4.26) for the
entropy, we could hope to determine a from the condition that the entropy
S must vanish at T = 0. If we attempt to do this, however, we see that
the term CV ln T on the right-hand side of (4.26) becomes infinite, and we
obtain an infinite value for the entropy constant.

The reason for this apparent failure of Nernst’s theorem for ideal gases
is that we assumed, as one of the properties of an ideal gas, that the specific
heat CV is a constant; we have already shown (at the beginning of the
preceding section) that this is incompatible with Nernst’s theorem.

One way out of this difficulty could be sought in the fact that no real
substance behaves even approximately like an ideal gas in the neighbor-
hood of absolute zero: all gases condense for sufficiently low temperature.
It is therefore physically not permissible to apply (4.26) to a gas in the
neighborhood of T = 0.

But quite apart from this consideration, if follows from quantum me-
chanics that, even for an ideal gas (defined as a gas whose molecules have
a negligible size and do not exert forces on each other), the specific heat at
very low temperatures decreases in such a way as to vanish in the neigh-
borhood of T = 0. Thus, even for an ideal gas defined above, (4.26) can be
applied only if the temperature is not too low.

By statistical methods and also by a straightforward application of Nernst’s
theorem, it is possible to calculate the entropy of an ideal gas for all tem-
peratures. In the limit of high temperatures, the entropy takes the form
(4.26), with the constant a, instead of being undetermined, expressed as a
function of the molecular weight and the other molecular constants of the
gas.

The simplest case is that of a monatomic gas, for which the entropy of
one mole is given by:

S = R

{
3
2

ln T + ln V + ln
(2πMR)3/2 ωe5/2

h3A4

}
, (8.13)

where M is the atomic weight; h is Planck’s constant (= 6.55× 10−27 C. G.
S. units); A is Avogadro’s number (= 6.03× 1023); and ω is a small integer
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that is called the statistical weight of the ground state of the atom. The value of
ω for different atoms is obtained from the quantum theory; we shall give
the value of ω for all the examples considered here. e is the base of the
natural logarithms.

Formula (8.13) was first obtained by Tetrode and Sackur. In order to
show that (8.13) can be put in the form (4.26), we must take (2.24) into
account. On doing this, we obtain for the entropy constant of one mole of
a monatomic gas the expression:

a = R ln
(2πMR)3/2 ωe5/2

h3A4

= R
(
−5.65 +

3
2

ln M + ln ω

)
.

(8.14)

We can also write the entropy of an ideal monatomic gas in a form corre-
sponding to (4.27):

S = R

{
5
2

ln T − ln p + ln
(2πM)3/2 R5/2ωe5/2

h3A4

}
. (8.15)

We cannot give a proof of these formulae in this book; we shall there-
fore limit ourselves to some examples showing the applications of these
formulae. As a first example, we shall consider the problem of calculating
the vapor pressure for a solid monatomic substance.

Let p be the vapor pressure of the substance at the temperature T.
Keeping the temperature (and the pressure) constant, we vaporize one
mole of the substance by increasing the volume very slowly. During this
process, the body absorbs from the environment an amount of heat, Λ,
equal to the heat of vaporization (per mole, not per gram). Since the va-
porization of the one mole of substance occurs reversibly, the change in
entropy during the transformation is:

Svapor − Ssolid =
Λ
T

.

Using the approximate expression (8.9) for the entropy of the solid and
the formula (8.15) for the entropy of the vapor, we obtain:

R

{
5
2

ln T − ln p + ln
(2πM)3/2 R5/2ωe5/2

h3A4

}
− 3R ln T− 4R+ 3R ln θ =

Λ
T

,

or, passing from logarithms to numbers,

p =
(2πM)3/2 R5/2ωθ3

e3/2h3A4
1√
T

e−Λ/RT (8.16)
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This formula should be compared with (4.38), which was obtained
from Clapeyron’s equation. The factor 1/

√
T in (8.16) arises from our hav-

ing taken into account the dependence of the heat of vaporization on the
temperature. We see that the factor of proportionality, which remained un-
determined in (4.38), has now been completely determined in (8.16) by the
use of Nernst’s theorem and the Sackur-Tetrode formula for the entropy
of a gas.

Since in many cases we have to deal with the vaporization of a liquid
and not of a solid, (8.16) cannot be used in general. As an example of the
vaporization of a liquid, we shall consider the vaporization of one mole of
mercury, because this element has a monatomic vapor.

The boiling point of mercury is 630 K. This means that the vapor pres-
sure of saturated mercury vapor at 630 K is equal to one atmosphere.

We shall now calculate the entropy of one mole of mercury at T =
630 K and p = 1 atmosphere by two different methods and compare the
two results.

Method 1. The Sackur-Tetrode formula (8.15) applied to our case (the
atomic weight of mercury is 200.6) gives:

S = 191× 107.

Method 2. We start with one mole of solid mercury at absolute zero.
Its entropy, according to Nernst’s theorem, is zero. We then heat the one
mole of mercury, keeping the pressure equal to one atmosphere, until its
temperature has reached the melting point, Tmelting = 243.2 K. During this
process the entropy of the mercury increases; its value for T = 243.2 K can
be calculated with the aid of (8.2):

Ssolid (243.2) =
∫ 243.2

0

C (T)
T

dT,

where C (T) is the atomic heat at constant pressure of mercury. The above
integral can be calculated numerically by using the experimentally deter-
mined values of C (T). On doing this, we obtain:

Ssolid (243.2) = 59.9× 107.

We now let the mole of mercury melt at atmospheric pressure. During
this process, the body absorbs reversible an amount of heat equal to the
heat of fusion for one mole of mercury (2330× 107 ergs/mole). The change
in entropy resulting from this is therefore obtained by dividing the heat
of fusion by the melting point; that is, the change in entropy is equal to
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2330× 107/243.2 = 9.9× 107. The total entropy of the mole of mercury is
now:

Sliquid (243.2) = 59.9× 107 + 9.9× 107 = 69.8× 107.

Next we heat the liquid mercury and raise its temperature from the
melting point to the boiling point. During this process, the entropy changes
by the amount:

Sliquid (630 K)− Sliquid (243.2 K) =
∫ 630

243.2

Cl (T)
T

dT,

where Cl (T) is the atomic heat at constant pressure. Using the experimen-
tal values of Cl (T), we can evaluate this integral numerically. Its value is
26.2× 107. Adding this to the value of the entropy of the liquid mercury
at the melting point, we find that:

Sliquid (630 K) = 69.8× 107 + 26.2× 107 = 96.0× 107.

We finally permit the mole of liquid mercury to vaporize at atmo-
spheric pressure. As a result of this, the mercury at the temperature T =
630 K absorbs an amount of heat equal to the heat of vaporization of one
mole of mercury (59, 300× 107 ergs/mole). The change in entropy is there-
fore equal to 59, 300× 107/630 = 94× 107, and we finally obtain for the
entropy of the mole of mercury vapor at the boiling temperature:

S = 96× 107 + 94× 107 = 190× 107.

This is in excellent agreement with the value found directly from the Sackur-
Tetrode formula.

The result which we have just obtained may be taken as an experimen-
tal proof of the expression for the entropy of a monatomic gas. Similar
calculations have been performed for argon and carbon, and in these cases
also very satisfactory agreement was found.

8.4 Thermal ionization of a gas: the thermionic
effect.

In Chapter 6 we established the law of mass action (equation (6.5)) for
chemical equilibria of gaseous systems. The constant coefficient (the factor
which does not contain the temperature) on the left-hand side of equation
(6.5) contains the entropy constants of gases that take part in the reaction.
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The knowledge of the entropy constants enables us, therefore, to calculate
this coefficient completely.

Since we gave the expression for the entropy constant of a gas only for
monatomic gases, we must choose, as an example, a reaction in which only
monatomic gases take part. It is evident that no reaction of this kind can be
found in chemistry. We shall therefore consider the following nonchemical
process.

When a gas, such, for example, as an alkali vapor, is heated to a very
high temperature, some of its atoms become ionized; that is, they lose
one of their electrons, and are thus changed into ions. If, for example,
we denote by Na, Na+, and e sodium atoms, sodium ions, and electrons,
respectively, the process may be represented by the reaction:

Na 
 Na+ + e. (8.17)

If is found that, at any given temperature, this ionization reaction reaches
a state of thermal equilibrium which is quite analogous to the chemical
equilibrium for ordinary chemical reactions.

In sodium vapor at very high temperatures, we actually have a mixture
of three different gases:

Neutral sodium, Na, having a concentration [Na]; sodium ions, Na+,
having a concentration

[
Na+

]
; and an electron gas (a gas composed of free

electrons), having a concentration [e].
Each of these three substances behaves like a monatomic gas; we may

therefore apply the general results, in particular, equation (6.5), of the the-
ory of chemical equilibria in gaseous systems to the ionization process
(8.17).

Since all the gases in the mixture are monatomic, we must use the first
of the expressions (2.24) for the molecular heats of the gases. The entropy
constants can be found with the aid of equation (8.14); and the statistical
weights ω are equal to 2, 1, and 2 for neutral sodium, sodium ions, and
electrons, respectively. We place M = 23, the atomic weight of sodium,
and neglect the very small difference between the masses of sodium atoms
and sodium ions, so that we may also place M equal to the atomic weight
of the sodium ions. The atomic weight of the electrons (that is, the mass of
the electrons divided by 1/16 of the mass of oxygen) is Me = 1/1830. Let
us finally denote by W (= 4.91× 10−12 ergs/mole) the energy needed to
ionize all the atoms in one mole of sodium vapor. We have, then,

∑ mjWj −∑ niWi = Wions + Welectrons −Watoms = W.

Making all the necessary substitution in equation (6.5), we finally ob-
tain, as the condition for thermal equilibrium in the thermal ionization of

136



sodium vapor, the following equation:

[Na][
Na+

]
[e]

=
h3A4

(2πMeR)3/2 T−3/2eW/RT.

This formula can be put into a more convenient form as follows: Let x
be the degree of ionization, that is, the fraction of atoms that are ionized:

x =

[
Na+

]
[Na] +

[
Na+

] ;

and let n = [Na] +
[
Na+

]
be the total concentration of the sodium (atoms

+ ions). We have, then,[
Na+

]
= nx; [Na] = n (1− x) .

Since there is obviously one electron present for each sodium ion, we have:

[e] =
[
Na+

]
= nx,

and we finally obtain:

n
x2

1− x
=

(2πMeR)3/2

h3A4 T3/2e−W/RT

= 3.9× 10−9T3/210−26,000/T.
(8.18)

The degree of ionization can be calculated from this formula.
Equation (8.18), which was first derived by M. N. Saha, has found sev-

eral important applications in the physics of stellar atmospheres.
As a further application of the Sackur-Tetrode formula, we shall obtain

the expression for the density of an electron gas which is in equilibrium
with a hot metal surface. When a metal is heated to a sufficiently high
temperature, it gives off a continuous stream of electrons. If we heat a
block of metal containing a cavity, the electrons coming from the metal
will fill the cavity until a state of equilibrium is reached, when as many
electrons will be reabsorbed per unit time by the metal as are emitted. We
propose to calculate the equilibrium concentration of the electrons inside
the cavity as a function of the temperature.

Let N be the number of moles of electrons inside the cavity of volume
V. The entropy of these electrons is obtained from (8.13) by multiplying
that expression by N and replacing V in it by V/N, since V/N is the vol-
ume occupied by one mole of the electron gas. Making use of (2.24) and
(2.19), we obtain for the energy of the electrons:

U = N
(

3
2

RT + W
)

,
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where W is the energy needed to extract one mole of electrons from the
metal.

For the free energy of the electron gas, we now obtain the expression:

Fel = N
(

3
2

RT + W
)
− NRT

{
3
2

ln T + ln
V
N

+ ln
(2πMeR)3/2 2e5/2

h3A4

}
,

where we have put Me = 1/1830 = the atomic weight of the electrons,
and ω for the electrons = 2.

The free energy F of our complete system is the sum of the previous
expression and the free energy FM of the metal:

F = FM+

N

[
3
2

RT + W − RT

{
3
2

ln T + ln V − ln N + ln
2 (2πMeR)3/2 e5/2

h3A4

}]
.

(8.19)

The condition for equilibrium is that F be a minimum for a given tem-
perature and volume. Assuming that FM is independent3 of N, we thus
obtain:

0 =
dF
dN

=
3
2

RT + W − RT

{
3
2

ln T + ln V − ln N + ln
2 (2πMeR)3/2 e5/2

h3A4

}
+ RT.

Passing from logarithms to numbers, we obtain the equation:

N
V

=
2 (2πMeR)3/2

h3A4 T3/2e−W/RT = 7.89× 10−9T3/2e−W/RT, (8.20)

which gives, as required, the concentration of the electron gas within the
cavity.

Problems

1. Calculate the degree of dissociation of sodium vapor at a tempera-
ture of 4000 K and a pressure of 1 cm. of mercury. (Take into account

3The experimental basis for this assumption is that the electrons inside a metal do
not contribute to the specific heat of the metal; the specific heat is completely accounted
for by the motion of the atoms. For a rigorous justification of this assumption, see any
treatise on the theory of metals.
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not only the pressure due to the sodium atoms, but also the contri-
bution of the ions and the electrons.)

2. Find the relation between the Debye temperature θ and the temper-
ature for which the atomic heat of a solid element is equal to 3R/2.
(Apply graphical or numerical methods.)
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