Table 6.2 Selected dimensionless groups of heat and mass transfer

Group	Definition	Interpretation
Biot number (<i>Bi</i>)	$\frac{hL}{k_s}$	Ratio of the internal thermal resistance of a solid to the boundary layer thermal resistance.
Mass transfer Biot number (Bi _m)	$rac{h_m L}{D_{ m AB}}$	Ratio of the internal species transfer resistance to the boundary layer species transfer resistance.
Bond number (Bo)	$\frac{g(\rho_I - \rho_v)L^2}{\sigma}$	Ratio of gravitational and surface tension forces.
Coefficient of friction (C_f)	$\frac{ au_s}{ ho V^2/2}$	Dimensionless surface shear stress.
Eckert number (Ec)	$\frac{V^2}{c_p(T_s-T_\infty)}$	Kinetic energy of the flow relative to the boundary layer enthalpy difference.
Fourier number (Fo)	$\frac{\alpha t}{L^2}$	Ratio of the heat conduction rate to the rate of thermal energy storage in a solid. Dimensionless time.
Mass transfer Fourier number (Fo_m)	$\frac{D_{\mathrm{AB}}t}{L^{2}}$	Ratio of the species diffusion rate to the rate of species storage. Dimensionless time.
Friction factor (f)	$\frac{\Delta \rho}{(L/D)(\rho u_m^2/2)}$	Dimensionless pressure drop for internal flow.
Grashof number (Gr_L)	$g\beta(T_s-T_\infty)L^3$	Measure of the ratio of buoyancy forces to viscous forces.
Colburn j factor (j_H)	$St Pr^{2/3}$	Dimensionless heat transfer coefficient.
Colburn j factor (j_m)	$St_m Sc^{2/3}$	Dimensionless mass transfer coefficient.
Jakob number (<i>Ja</i>)	$\frac{c_p(T_s - T_{\text{sat}})}{h_{f_g}}$	Ratio of sensible to latent energy absorbed during liquid-vapor phase change.
Lewis number (<i>Le</i>)	$rac{lpha}{D_{ m AB}}$	Ratio of the thermal and mass diffusivities.
Nusselt number (Nu_I)	$\frac{hL}{k_f}$	Ratio of convection to pure conduction heat transfer.
Peclet number (Pe_L)	$\frac{VL}{\alpha} = Re_L Pr$	Ratio of advection to conduction heat transfer rates.
Prandtl number (<i>Pr</i>)	$\frac{c_p\mu}{k} = \frac{\nu}{\alpha}$	Ratio of the momentum and thermal diffusivities.

Table 6.2 Continued

Group	Definition	Interpretation
Reynolds number (Re_I)	$\frac{VL}{\nu}$	Ratio of the inertia and viscous forces.
Schmidt number (Sc)	$rac{ u}{D_{ m AB}}$	Ratio of the momentum and mass diffusivities.
Sherwood number (Sh_I)	$rac{h_{\!\scriptscriptstyle m}\!L}{D_{\!\scriptscriptstyle m AB}}$	Dimensionless concentration gradient at the surface.
Stanton number (<i>St</i>)	$\frac{h}{\rho Vc_p} = \frac{Nu_L}{Re_L Pr}$	Modified Nusselt number.
Mass transfer Stanton number (St _m)	$\frac{h_m}{V} = \frac{Sh_L}{Re_L Sc}$	Modified Sherwood number.
Weber number (<i>We</i>)	$rac{ hoV^2L}{\sigma}$	Ratio of inertia to surface tension forces.