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Preface

This short book on the subject of thermodynamics is based
on a series of lectures I gave for the possible benefit of
some 500 sophomore engineering students at Rensselaer
Polytechnic Institute during the spring term of 1968. These
lectures were not in any sense meant to replace a textbook,
nor were they intended to cover the same ground in the
same way as a textbook. I intended them to supplement
the textbook, and it was my primary hope that they might
help the student over the very difficult ground characteristic
of the early stages of an initial course in thermodynamics.

I offer this material in print for the same reason. It falls
in the classification of a visual aid, though of a very old-
fashioned but perhaps still not outmoded type. It is intended
not for experts, but for students. I have left rigor for the
textbook and from the very beginning have directed my
efforts here toward showing the plausibility and usefulness
of the basic concepts of the subject.

H.C. Van Ness
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EnergyConservation—

The First Law of
Thermodynamics

What is thermodynamics? Very briefly, it is the study of
energy and its transformations. We can also say immedi-
ately that all of thermodynamics is contained implicitly
within two apparently simple statements called the First
and Second Laws of Thermodynamics. If you know anything
about these laws, you know that they have to do with
energy—the first, explicitly, and the second, implicitly.
The First Law says that energy is conserved. That’s all;
you don’t get something for nothing. The Second Law says
that even within the framework of conservation, you can’t
have it just any way you might like it. If you think things
are going to be perfect, forget it. The Second Law invokes

BIBLIOTECA

C.U.C.E. Il




w“‘l
5

2 Understanding Thermodynamics

a quantity ‘called entropy, something that is not part of our
experience, so we’ll let it go for a time and consider first
the First Law. There is a certain logic in taking up the
first things first, and furthermore it allows us to deal with
something we all know about, namely, energy.

What is energy? One might expect at this point a nice
clear, concise definition. Pick up a chemistry text, a physics
text, or a thermodynamics text, and look in the index for
“Energy, definition of,”” and you find no such entry. You
think this may be an oversight; so you turn to the appro-
priate sections of these books, study them, and find them
to be no help at all. Every time they have an opportunity
to define energy, they fail to do so. Why the big secret? Or
is it presumed you already know? Or is it just obvious?

For the moment, I’'m going to be evasive too, but I’ll
return to the question. Whatever it ¢s, one thing we know
about energy is that it is conserved. That’s just another
way of saying that we believe in the First Law of Thermo-
dynamics. Why do we believe in it? Certainly no one has
proved it. On the other hand, no one has been able to find
anything wrong with it. All we know is that it has always
worked in every instance where it has been applied, and we
are happy with it simply because it works. Why does it
work? We haven’t the faintest idea; it’s just a miracle of
nature. The conservation law is a description of how
nature works, not an explanation. Fortunately that’s all
we néed.” -

Although we do not know why it works, we do know how
it works. Any conservation law says that something doesn’t
change, and any use of the law just involves accounting.
We know there is a fixed amount of something, and we need
merely find the various pieces that add up, or account for,
the total. To give you an idea of how this is done, I am
going to tell a ridiculous story. I've stolen the idea of this
story from Richard Feynman, Nobel Prize-winning physi-
cist and professor at the California Institute of Technology.
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His “Lectures om Physics’’! should be studied by every
serious student of science and technology.

It is the story of 37 sugar cubes, a small boy, and his
mother. To set the scene, I will ask you to imagine the
boy’s room at a corner of a house in rural surroundings. The
room has two windows, one facing west and the other facing
north. For identification, we will call them window W (for
west) and window @ (sorry about that). It happens that
window W overlooks a small pond. The boy (perhaps his
name is Dennis) plays in this room, and his mother looks
in from time to time. One day he asks his mother for some
blocks to play with. She has no blocks, but she decides that
sugar cubes will do. So she gives him 37 sugar cubes and
tells him he is not to eat any or he’ll be punished. Each
time she returns to the room she counts the sugar cubes
lying around, and they total 37; so all is well. But one day
she counts and finds only 35. Now Dennis points to an
old cigar box he plays with, and his mother starts to open
it. But Dennis screams and says, “Don’t open the box”.
The mother, of course, realizes she could open the box any-
way, but she’s an intelligent, modern mother, and she
realizes that this would be a traumatic experience for the
boy; so she takes another course.

Later in the day, when she again sees 37 sugar cubes
lying about, she weighs the empty box, getting a value of
4.34 oz. She also weighs a sugar cube, getting a value of
0.12 oz. Now the clever lady sets up a formula by which
she can check the number of sugar cubes:

No. on floor + wt of box — 4.34 oz 37
0.12 oz

This formula works perfectly for quite a time. The left side
always totals 37. But one day it does not. Two sugar cubes

1 Addison-Wesley Publishing Company, Ine., vol. I, 1963; vol. II,
1964.



4 Understanding Thermodynamics

are missing. ks she ponders this problem, she notices that
window W is open. She looks out and realizes that the
missing sugar cubes could be dissolved in the pond. This
taxes her ingenuity, but she was once a nurse and knows
how to test the pond for sugar. So she adds a new term to
her formula, obtaining

wt of box — 4.3 oz

No. on floor + 013 o

-+ k (sucrosity of pond) = 37

and determines the proportionality constant k by tossing
a cube into the pond herself.

This fixes up her formula, and again it works perfectly,
accounting always for 37 sugar cubes. As she uses the for-
mula, she begins to realize she could make her work easier
if she dealt with changes in the various terms from one
checking of the formula to the next. From this point of view
the formula can be written as

A(No. on floor) + ﬂ(;loé%o_x)

+ k A(sucrosity of pond) = 0

where the symbol “A” means change of. This equation
simply says that if sugar cubes are conserved, the sum of all.
changes in the number of sugar cubes in various places must
be zero. This equation too works perfectly for a long period,
but one day it fails. The sum comes out not zero, but —4.
Four sugar cubes are missing! This time it doesn’t take
mother long to notice that both windows are open and that
she has no term in her equation to account for sugar cubes
thrown out through window Q. She does not see any sugar
cubes on the ground outside, but she does see several
squirrels running about. How can she possibly keep track
of all that goes on outdoors? The pond was bad enough,
but what about squirrels and who knows what else? Her
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husband, an electrical engineer, solves her problem by
building a detection system at each window that counts
the sugar cubes as they fly past, so it is no longer necessary
to keep track of what happens outdoors. It is only necessary
to record what passes through the walls of the room. The
mother revises her formula again to reflect the new account-
ing procedure:

A(wt of box)
A(No. on floor) + —oi%er

+ No. passing W + No. passing @ = 0

Note that we did not put A’s with the two new terms. They
need not be thought of as a change in anything. They just
represent a number of objects passing a boundary during
the interval between checks. In fact, we may as well simplify
these terms to read W and Q. We can also transpose them
to the other side of the equation; the result is

A(wt of box) _

A(No. on floor) + 012 oz

-Q-W

You see that we are getting more and more technical, and
when this happens, technical terms also begin to appear.
We may as well introduce several such terms here. Notice
that we have narrowed our attention down to the room and
to its walls, ie., to a small region of space. In technical
language, we-call the room our system, and the walls become
its boundary. Everything outside the boundary is called the
surroundings. We would very much like to get rid of the sur-
roundings because of their infinite complexity, but we can’t
really ignore them. On the other hand, we can make our
formula look like it deals only with the system. The last
form in which we wrote our formula puts the terms that
have to do with changes in the system on the left. On the
right we have terms to show what passes out of the system,
but they are really there to account for changes in the sur-
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roundings. By associating them with the boundary of the
system we make the appearance of dealing solely with the
system. We treat Q and W as quantities, not as changes in
anything, but in fact they are there to account for changes
in the surroundings. Any conservation law must somehow
include both the system and its surroundings. By insisting
that we can account for the surroundings by counting at
the system boundary, we are in fact adding something new
to the content of a conservation law. It is a bit subtle but
becomes obvious once pointed out. We do not expect one
of Dennis’ sugar cubes suddenly to disappear from his room
on one side of the world and simultaneously to reappear
someplace on the other side of the world, even though the
other side is part of the surroundings. Why not? No simple
statement of a conservation law excludes this. But it just
isn’t reasonable; it doesn’t make sense. We'll leave it at
that. The point is that the system-and-its-boundary formula
excludes this possibility. We could also exclude it by insist-
ing that conservation exists between a system and its local
surroundings, but then we would have to define “local”’ as
any part of the universe with which the system interacts.
Then we would find it necessary to define “interacts,” and
so on. The beauty of the mathematical system-and-its-
boundary formula is that it avoids this chain of verbiage,
and this is one of the major advantages of the use of mathe-
matics in the formulation of the laws of science, not that
conservation of sugar cubes is a law of science—not yet,
at any rate. So let’s return to Dennis, his mother, and the
37 sugar cubes.

Allis going well, except that Dennis’ final sugar cube just
entered the surroundings. It’s time for a new game, and
Dennis’ mother dumps a handful of sugar cubes in his
cigar box. This time she doesn’t even count them. Can she
still play the game? She certainly can, and she can even
delay the start. All it takes is an initial observation and
the setting of the window counters to zero. The formula
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always works, and when the counter on window @ breaks
down, the mother realizes she can use her formula to find
out how many sugar cubes are being fed to the squirrels.

Now consider another situation. A friend comes to visit
and hands Dennis a bag of jelly beans. The mother doesn’t
happen to see this, and the friend says nothing about it.
Furthermore, Dennis treats the jelly beans as if they were
illegal; he never leaves any on the floor, and he won’t say
what he has. His mother is very curious, but all she knows
is that Dennis has something in his cigar box. Nevertheless,
she decides to try her formula; and it’s going to work, be-
cause jelly beans come in lumps, and that’s essential to her
accounting scheme. Remember, she does not know what
Dennis has. It is only necessary that she believe in lumps;
she doesn’t have to see them. She does have one problem;
she does not know the weight of a lump. So her formula must
be written

A(wt of box) _ —Q-W
a
How does she get a, the weight of a lump? There’s only one
way; she must use her formula. So she weighs the box and
sets the counters. Then after an interval she reweighs the
box, records Q and W; now a is the only unknown in her
formula, and she determines its value. After that she can
use the formula to check her ‘“law of conservation of lumps.”
Altermatively, she can use it to calculate any one of the
three factors in it from the other two, provided only that
she accepts the law of conservation of lumps to be valid.
Perhaps this is all absurdly obvious. If so, we can make it
more cryptic by noting that the left-hand member of the
mother’s formula can be viewed a bit differently. This
formula represents no more than a counting scheme, and
Q and W represent counts directly. But the left-hand
member is a count only indirectly. Clearly, the number of
counts that it represents is given by the change in some
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.
Junction of the weight of the box. Thus the equation may

equally well be written

Alf(wt of box)] = —Q — W

wt of box

where f(wt of box) = 4

Here we know precisely the nature of the function f(wt of
box), and by experiment we have established the value of a,
the only adjustable parameter in it. However, we can
imagine more complex situations where the function de-
pends on properties of the box other than weight (perhaps
on its electric charge or its permeability to x-rays). More-
over, the nature of the function may be far from simple.
Thus we begin to see how a conservation law can become
both difficult and abstract.

The law of conservation of energy is inherently more
difficult and abstract because it does not deal with the
conservation of lumps. Energy does not come in uniform
lumps. This law proclaims the conservation of a number
which does not represent any particular thing. Let’s examine
this in detail. How is energy conservation similar to and

~ different from conservation of sugar cubes and jelly beans?
They are alike in that the formulas which describe their
conservation are mathematically similar; that is, the for-
mulas include terms that account for changes in both the
system and its surroundings. Moreover, their simplest and
most convenient expression is given in terms of changes
which oceur within the system and in terms of quantities
which pass the boundary of the system. This also requires
that conservation be local. Thus we can write the same
equation for energy conservation as we did for the con-
servation of lumps. It is analogous to the case in which we
never saw the lumps, for nobody has ever claimed to see
energy. The energy of a system is no more evident than
jelly beans enclosed in a cigar box. So our conservation
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formula has the form,_

A(energy of system)
= —energy out by @ — energy out by W

The energy of the system is presumed to be some function
of the measurable properties of the system, just as the
number of jelly beans was a function of the weight of the
box. But we can’t weigh energy, and the functional rela-
tionship is not known ahead of time. We can only guess of
what property the energy of the system is a function. So
we guess that it may be a function of temperature, pressure,
composition, magnetization, etc. We really don’t know so
we’ll leave it indefinite by writing

Energy of system = U(T,P,ete.)

where we call U the internal energy function, and the paren-
theses show of what property it is a function. Our conserva-
tion formula is now written

A[U(T,Pete.)] = —Q — W

The notation is often simplified still further so that we
usually have

AU = —Q—W

and we get careless with our terminology and call U simply
the internal energy, as though we know exactly what we’re
talking about. But in fact we don’t, and U is known only
as a function of other things.

Q and W are terms representing energy passing the system
boundary, not just by different windows, but by different
modes. They are called heat and work, respectively, and
both words have a special technical meaning. Both can give
us all sorts of trouble, but for the moment let’s assume we
know all about them and can measure them.
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You may be thinking that I have somehow derived the
equation of energy conservation. Nothing could be further
from the truth. I have just written it down. That’s all
anybody can do. No matter how much is written about
this equation in thermdodynamics texts, no matter how many
fancy diagrams are drawn, no matter how confused the
issue is made by mathematical manipulations, if you look
carefully, you will find in the end that the author has
merely written it down. No fundamental law of science is
derivable by any means that we know today. If we could
derive such laws, they would not be called fundamental.
Then have I explained the law of conservation of energy?
Again, I have not. I have tried to make the fact that it
works seem plausible, but primarily I am trying to show
you how it works, and there is a little way to go yet.

One thing about my equation may be bothering you. It
is written with minus signs on both Q and W. The origin
of these minus signs lies in the fact that Dennis could
throw sugar cubes only out of the system. Had sugar cubes
somehow come only into the system, both signs would be
plus. However, the equation is usually written

AU=+Q—-W

This is just an accident of history. The first applications of
thermodynamics were made to heat engines, devices which
take in heat and put out work. The signs merely reflect a
decision orr the part of the founding fathers to make heat in
and work out positive quantities for their favorite device.
You can write it any way you want, that is, +Q + w,
—Q—W, —Q+ W, or +Q — W. All that is required is
consistency in ascribing signs to your numerical values of
@ and W. We will henceforth follow the crowd and write

A[U(T,Pete.)) = Q — W

How is this equation to be used? For engineering purposes
we want to use it to calculate either @ or W, -or even both Q
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and W if we can find a second equation connecting @ and-

W. But how can we use it without knowing the functional
relation U(T,P,etc.)? How are we to get numbers for this
function? How are we even going to find out what U is a
function of? L

The answer to the last question is easiest. It involves the
notion of state. We say that the internal state of a system is
fixed when none of its measurable properties changes any
more. Then the problem is to find what measurable prop-
erties we need to establish at arbltrary values in order to
fix the state of a system. This is one of the major compli-
cations of thermodynamics—to know what the variables
are. The only way to find out is by experiment. The internal
energy is presumed to be a function of the same variables
as is the volume.

Having established the variables, say temperature T and
pressure P, how do we get the relationship between U and
these variables? This is the second major complication of
thermodynamies. We find in any ultimate analysis that we
must use our equation of energy conservation. This may
seem incredible; after all, the use of the equation

AlU(TP)=Q—-W

is to find Q or W. How can we use it to calculate values for
U(T,P) and Q or W at the same time? The secret is that
we don’t do both at the same time. We play the game forward
and backward, but at different times, just as Dennis’ mother
did when she used her equation backward to determine the
weight of a jelly bean or lump that she never saw. Having
done that, she could subsequently use her equation forward
to check on the conservation of lumps or to find the number
of lumps in the pond or the number fed to the squirrels.
The same thing holds true for the energy equation, except
that the process is more complicated because not only do
we never see the energy, it does not come in lumps.

In the laboratory we set up a small system and make

Y
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12 Understanding Thermodynamics

changes in it, measuring 7 and P and @ and W. From these
it is possible to deduce U(T,P) for various values of T and
P within an additive constant. In use we always have
A[U(T,P)] so that the constant drops out. We can put down
U(T,P) in the form of a graph, a table, or an equation. But
we must have such information, and it must ultimately
come from experiment. Moreover, we must have U(T,P) or
U(T,P,etc.) for the particular kind of system we wish to
deal with. Givén this information, we may apply the energy
formula

A[U(T,Pete)] = Q — W

to any process involving the same kind of system, and it is
in no way limited to just those processes used to determine
U(T,P,etc.). Any such limitation would make it of no use
at all.

Let us say that we know U(T,P,etc.) and now apply our
conservation formula to many different processes. We find
time after time that it checks out, that it works. Then one
day it doesn’t. What to do? We do just what Dennis’
mother did. We look for sugar cubes under the rug, in the
pond, or in any place we had not considered before. We
notice that our system changed its elevation. Maybe that
changes its energy. Sure enough, a bit of experimentation
shows that we can devise a potential energy function which
fixes our formula—for a time. We go through the whole
business “again and find we need a kinetic energy function
when the system has velocity. So we add terms to our
formula as follows:

A[U(T,Pete.)] + A[PE()] + AKEwW)] = Q@ — W

Fortunately, the two new functions are known explicitly
in terms of measurable properties; thus

Potential energy function = PE(z) = mgz
Kinetic energy function = KE(u) = 4mu?
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where z = elevation

m = mass
g = acceleration of gravity
u = velocity

Thus

A[U(T,Pete.)] + mgAz + Ygm Au2 = Q — W

And so it goes. Whenever our equation does not work, we
can fix it up with a new term. Others may object that this
. ~ . .

isn’t fair and accuse us of deciding arbitrarily that the law
of conservation of energy s valid and of being determined
to make it work. They claim that we doctor it up so that
everything comes out all right. They would, of course, be
correct if we ever added a term ecalled “unaccounted for”’
or “lost.” That would spoil it all. But it turns out that
every time we add a new term to our equation, we're also
able to say how to evaluate it from measurable parameters.
This sort of doctoring is completely justified. Can we do
the same thing with a law of conservation of sugar cubes?
The answer is no. What if Dennis stomps on a sugar cube?
We still have sugar but no cube. Or he may eat one, and
then we don’t even have sugar.

Perhaps the ultimate test of our accounting scheme came
with the advent of nuclear fission. Energy appears in this
case to come from nowhere, but in fact a term provided by
Einstein readily maintains the validity of the conservation
equation. The new term is a nuclear energy function, and
its change is —c? Am, where ¢ is the velocity of light and
Am is the change in mass of the system. The minus sign is
necessary because Am is negative; the mass of the system
decreases. Our equation then becomes

A[U(T,P,ete.)] + mg Az + Lgm Au? — c2Am = Q — W

When we're all done, what do we have? We have an
equation which is said to give mathematical expression to
the law of conservation of energy. But how else could this
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law be expressed except mathematically? Every form of
energy we have discussed is known only as a function of
other variables, and I have been careful to say internal
energy function, potential energy function, etc. Functions
are pencil-and-paper constructs. I can’t show you a function
that has any other substance, and that is why I can’t show
you a chunk of energy or why I can’t define it or tell
you what it is. It is just mathematical or abstract or just
a group of numbers. Thus we have no energy meters, no
device we can stick into a system which will record its
energy. The whole thing is man-made.

What we have is a scheme with a set of rules. The scheme
involves only changes in the energy functions. It is set up
this way because we have no way to calculate absolute
values of our energy functions. The remarkable thing about
this scheme is its enormous generality. It applies equally to
the very small and to the very large; it applies over any
time interval, short or long; it applies to living matter as
well as to dead. It applies in the quantum-mechanical and
relativistic realm as well as in the classical. It just plain
works. We can never be absolutely sure that it will always
work, but we are sufficiently confident so that with it we
make all sorts of predictions, and that is its use.



The Concept of
Reversibility

In Chap. 11 talked about energy and its conservation from
a very general point of view. I tried to show how we go
about the business of accounting for energy. We ended with
a scheme and a set of rules—a formalism. Now this formal-
ism is something we have created to serve our own ends,
but it has built-in limitations which derive from the fact
that energy is not a thing, like a sugar cube or a jelly bean.
My point is that this particular formalism may not be
appropriate for just any old system we might select in
applications of the law of conservation of energy. The law
itself is, of course, always right, but the particular formalism
used to express it may present difficulties if the system is
not selected with care.
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For example, consider a block of steel acted upon by a
force F so that it slides at uniform velocity over another
piece of steel, as shown in Fig. 2-1. Let us apply our formal-

F

—————

T

Figure 2-

ism to the first block taken as the system. This block is
shown in Fig. 2-2 along with the forces that act on it along

7F——-——. —_————

I’z
Figure 2-2
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!

the line of its motion. Since the velocity of the block is
uniform, the frictional force F” must be equal and opposite
to the applied force F. Thus

F—F =0

and there is no net force on the block. Since the work done
on the black is equal to the net force times the distance
through which it moves, we conclude that the net work done
on the block is zero. The First Law of Thermodynamics as
we have expressed it may be written for the block as

AU=Q-W

where AU is the internal energy change of the block, @ is
the heat added to the block, and W is the net work done
by the block. But W = 0, and therefore

AU = @
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This result says that the internal energy change of the block
is equal to the heat transferred to the block from the sur-
roundings. Remember that Q is a term which is included
to account for energy changes in the surroundings. How-
ever, we call it heat because it is energy transferred across
the boundary of the system as a result of a temperature
difference. Now we know from experience that the tempera-
ture of the sliding block increases, and this increases its
internal energy. According to our equation this implies a
transfer of heat to the block from the surroundings, which
would then necessarily be at a higher temperature than
the block. But there is no mechanism by which the tem-
perature of the surroundings is raised above that of the
system (the moving block). Thus if @ has the significance
we have attached to it, the equation must be wrong, and
if the equation is correct, we must redefine Q. The formalism
we have developed simply does not apply to the particular
system chosen in this example. Our choice was such as to
make the system boundary the site of a transformation of
energy. The mechanism is friction, and the friction occurs
at the boundary separating the system from the surround-
ings. This always leads to embarrassment.

We can either abandon the formalism or select a new
system. Usually, we take the latter course and pick a
different system. In this case we may take both\blocks as
the system. This serves to put the friction inside the system.
Figure 2-3 shows our new system and the force F acting on
it. Both block 1 and block 2 experience changes in internal

E\a

Figure 2-3
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energy, and we write our First Law equation as
AUl + AUz = Q - W

The work W is simply the work done by the force F as it
moves a distance As. This work is negative (done on the
system); thus we write W = —F As. Therefore,

AU+ AUz = Q@ + F As

In this equation @ is not heat transfer between the blocks,
but heat transfer from both blocks to their surroundings.
We now have an entirely proper equation and have avoided
any emharrassment. On the other hand, we cannot by
thermodynamics alone evaluate AU,, AU,, or Q. Thermo-
dynamies just tells us what terms we need to take into
account, and it gives us an equation relating the terms.

With this illustration I’ve tried to make two major points.
First, we must use judgment in the selection of a system if
we expect to use the formalism by which the First Law is
normally expressed. Second, many problems cannot be
solved by thermodynamics alone.

Another apparently simple device encountered endlessly
in thermodynamics is the piston-and-cylinder combination,
as shown in Fig. 2-4 (we usually consider a gas to be trapped
in the cylinder). If embarrassments of the kind encountered
with the sliding block are to be avoided here, we must
assunre that the piston moves in the eylinder without fric-

| r4

|vrs 727,
Figure 2-4
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tion. This is good for all sorts of trivial applications of*
thermodynamices, but it can also be used to illustrate a
number of very important concepts; we will use it exten-
sively for this purpose.

Imagine that we have such a piston-and-cylinder com-
bination and that a weight w is placed on the piston to hold
a gas under compression in the cylinder. This initial state
of the system is shown on the left in Fig. 2-5. We will

. Figure 2-5 .

assume that the piston is so perfectly lubricated that it can
move without friction in the cylinder. In addition, we will
assume that the piston and cylinder are constructed of a
special material that is a perfect heat insulator. Thus there
can be no heat transfer between the gas and its surround-
ings. Any such process is said to be adiabatic.

We wish to use the compressed gas in the cylinder to
accomplish useful work, and the question is how to carry
out a process so that we may obtain the maximum possible

A
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useful work. Raising the weight w will be considered the
object of the process and will thus constitute the per-
formance of useful work. Since the initial state as shown in
Fig. 2-5 is one of equilibrium, it is clear that the piston will
not move unless the weight w is removed from the piston.
Imagine that the weight is struck from the side so as to
cause it to slide suddenly to an adjacent shelf. The piston,
of course, shoots upward and after a period of up-and-down
oscillation settles into a final equilibrium position, as shown
on the right in Fig. 2-5. On the other hand, the weight w
has not been raised, and no purpose has been served by the
process. We must do things differently.

We decide to divide the weight into two parts so that we
need not remove all of it from the piston at once. Again
we start with the piston held in position by the weight w,
as shown in Fig. 2-6. This time we slide only 14w off the
piston to an adjacent shelf. The piston again shoots upward
and eventually comes to rest in a new equilibrium position,

[12u]

12w
1/2w

Figure 2-6
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but this time it has carried half the weight w with it. This ~
14w may now be pushed off to another shelf, and the piston
is again free to find a new final position. All three stages of
this process are shown in Fig. 2-6. Clearly, a weight has
been raised; the process has been of some use. Half of the
weight w has been raised somewhere near half the distance
of the piston stroke. But is this the best we can do? What
if we divide up the weight into much smaller bits and use,
for example, a pile of sand? We might imagine flicking
grains of sand off the pile one by one and having them
stick to a sheet of flypaper. Various stages of this process
are depicted in Fig. 2-7. The removal of each grain of sand

Figure 2-7

from the piston_causes very little change in the system.
The piston moves but a very small distance at a time, and
there is but the slightest oscillation of the piston as it finds
a new equilibrium position only a hair above its previous
position. Clearly the final grain of sand is carried with the
piston almost to the end of its stroke, and in the end we
have raised all the weight w (the sand) an average distance
of something like half the stroke of the piston.

All we can do to improve on this last process is to use a
finer sand and in the limit to make the grains infinitesimal
or vanishingly small in size. Then the process is carried out
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in differential steps, and we can only imagine it. Such an
imaginary process would improve but slightly upon the one
just described. But it does represent the limit of what can
be done by way of improving the process and thus providing
the maximum possible work, and as such it is worthy of
our close attention.

This imaginary process is called reversible because at any
point it could be turned around and made to go the other
way simply by replacing the infinitesimal grains of sand on
the piston. Only one additional infinitesimal grain of sand
would be needed to start the reverse process. Then the
particles previously removed from the piston could be
placed back on the piston at exactly the same level they
had on the flypaper. In other words, only a differential
change in conditions would be required to reverse the
process, and then the reverse process would carry the sys-
tem back to its initial state, leaving only a minute or differ-
ential change in the surroundings.

The reversible process is unique, and as such occupies a
position of essential importance in thermodynamics. The
reason for this is that it represents the limit of what is
possible in the real world. We cannot even imagine any-
thing better. Moreover, it lends itself to exact mathematical
analysis, and this is not true of any other process. Our
choice in thermodynamics often is to do calculations for
reversible processes or to do no calculations at all. The
reason for this is that reversible processes are those for
which the forces causing change are almost exactly in
balance. Thus the states through which the system passes
during a reversible process are for all practical purposes
equilibrium states, or more precisely are never removed
more than differentially from equilibrium states. The im-
portance of this observation is demonstrated by the follow-
ing considerations. The work done in raising a weight is
given by [F ds, where F is the force of gravity on the weight
and s is the elevation of the weight above some arbitrary
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but fixed datum level. Now if we wish to calculate the work *

done by the gas in any of the processes described earlier,
the force F must be the gravitational force acting down-
ward on all of the mass supported by the gas at pressure P.
This mass includes that of the piston, the piston rod, the
pan, the weight w, and the atmosphere above the piston.
In the case of the reversible process this force F' is never
more than minutely out of balance with the force exerted
upward on the piston face by the gas and given by the
product of pressure and the piston area. Thus, for all prac-
tical purposes, F = PA for the reversible process. In addi-
tion, the volume change of the gas (the system) is always
given by dV = A4 ds. Thus ds = dV /A, and the work done
by the gas is

Thus if we can substitute PA for F, we can calculate the
work from knowledge of the system without knowing any-
thing about what happens in the surroundings. This sub-
stitution is possible only for reversible processes where the
forces are never more than differentially out of balance.

For irreversible processes this substitution is not possible.
When a finite weight is removed from the piston in the
processes described, the force of gravity acting downward
is overbalanced by the gas pressure acting upward by a
finite amount, and F does not equal PA again until a new
equilibrium position of the piston is reached. Thus P4
cannot be substituted in the integral [F ds, and it is not
possible to calculate the work from a knowledge of the
properties of the system. Thus we have the important result
that the work done by the system (the gas) is given by
JP dV only when the process is reversible; that is,

Ve
Wiew = v P4V

Moreover, this work for an expansion process is the maxi-

S ¥
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mum work which the system can produce. If we were to
consider the compression of a gas by a piston in a cylinder,
we would obtain the same results except that the reversible
work would be the minimum work required for compression
of the gas. The difference is, of course, that a compression
process is carried out by work done on the system, whereas
an expansion process results in work done by the system.
In either case the reversible work is a limiting value, i.e.,
the maximum obtainable when work is produced and the
minimum required when work is expended.

If we were to sit down to flick grains of sand one by one
off a piston, we would have to be very patient indeed in
order to wait out any appreciable change in our system. If
the grains of sand were made infinitesimal, any finite process
would require an infinite time. This is characteristic of all
reversible processes; we must imagine them to- proceed in-
finitely slowly. This is consistent with the fact that they
are imagined to be driven by an infinitesimal imbalance of
forces.

We assumed our piston-and-cylinder processes to occur
without friction for a very good reason. Without this
assumption we could not even imagine a reversible process.
If there were friction between the piston and the eylinder,
the piston would stick, and we would always have to remove
a finite amount of sand from the piston before it would move
at all. Then it would move in jumps, and the condition of
virtual balance of forces which allows us to substitute PA
for F would be violated.

The other assumption we made was that the process was
adiabatic, i.e., that there was no heat transfer. This assump-
tion was made merely for convenience, so that we could
concern ourselves with just the mechanical aspects of the
process. - It is entirely possible to imagine reversible heat
transfer. The driving force for heat transfer is a tempera-
ture difference, and for reversible heat transfer we need only
imagine that this temperature difference becomes infini-
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tesimal. Thus heat is transferred reversibly when it flows:

from an object (or a system) at temperature T’ to another
object (or the surroundings) at temperature 7' — dT.

The concept of reversibility is essential to the subject of
thermodynamics. Its abstract nature in no way destroys
its practical utility, as I hope to demonstrate in the next
chapter.
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Heat Engines

In this book I don’t feel constrained to present material in
the same order that is found in any standard textbook. My
purpose; in fact, is to do it differently. The problem in
teaching thermodynamics is that the most difficult, the
most confusing, and the least interesting material is pre-
sented first, and the early applications are usually at best
trivial and at worst misleading. But this material and these
examples are just a prelude, and in this chapter and the
next I want to get beyond all this so that you can get some
idea of the usefulness of thermodynamics.

In my last lecture I discussed the problem of getting work
from a compressed gas by means of an adiabatic expansion
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in a piston-and-cylinder assembly. We found that the
maximum work could be obtained only for a reversible
expansion. Furthermore, we found that we could calculate
the work by [P dV only for such a process. For irreversible
processes things are not so easy. Unfortunately, it is a
matter of everyday experience that all processes in the real
world are irreversible. The watch you are wearing ‘“runs
down.” An oscillator must have a continuous supply of
power or it stops. The earth slows its rotation because of
the tides. All living things grow older. You can readily
scramble an egg, but the only convenient way to unscramble
it is to feed it to a hen, and this presumably requires the
expenditure of considerable effort on the part of the hen.

If all real processes are ifreversible, why do we spend so
much time discussing reversible processes? In the first
place, the reversible process represents a limiting behavior,
i.e., the best that we can hope for. Thus we employ it as
a standard against which the performance of real processes
may be measured. Secondly, the reversible process is one
for which we can readily do the calculations. The alternative
is likely to be that we do no calculations at all.

We do not always need the assumption of reversibility.
There are, in fact, two situations. First, there are problems
for which an energy balance can be written that contains
only one unknown term. In this case we need not concern
ourselves: with the question of reversibility; we just solve
the equatién. Energy is always conserved for reversible and
irreversible processes alike. Second, there are problems for
which the energy balance contains more than one unknown
term. Here the assumption of reversibility is usually essen-
tial if we wish to do any calculations at all. So we assume
reversibility when we are forced to and in that way change
the problem into one we can work. But then are we not
just working imaginary problems? We are, indeed. But
what use is that? There are, in fact, two uses, and thermo-
dynamics splits here into two complementary parts. The

el
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first part might be called theoretical, because it concerns
itself with the properties of materials and their experi-
mental measurement. The second part might be called
applied, because it concerns itself with the solution of
practical problems through use of the properties provided
by the first part.

I pointed out earlier that the equation-

AU=Q—-W

is used forward (to solve problems) and backward (to pro-
vide values of U). I’'m talking about the same thing again.
Consider the theoretical, or backward, use of this equation.
For this we usually use the differential form of the energy
equation, dU = dQ — dW. Now we are just interested in
the property U of some material, say a gas, and in how it
is related to other properties such as P, V, and T. We can
imagine that the gas (a real gas) undergoes any kind of
process we like. Why not imagine the process to be reversi-
ble? Then we can substitute P dV for dW, and later we
will see that in the same way we can substitute T dS for
d@Q; thus we get
dU = TdS — P4V

Now we derived this equation for a reversible process, but
once derived we see that it contains just properties of the
system, and so it must not depend on the kind of process
considered. What we have really done is to derive an
equation for a special case and then conclude that it must
be general! Thermodynamics does things backward! We
are always generalizing. But once having the equation we
can forget our reversible process (which was but a means to
ah end) and enter the abstract world of pure mathematics.
You'd never believe what’s done with this poor little equa-
tion (and all of it exactly right, because it depends only
on mathematics). That’s the theoretical half of thermo-
dynamics, and although we will pay some attention to it,
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we are really more interested in the other half—applied
thermodynamiecs.

What then do we do about irreversibilities in real proc-
esses where the problem can’t be solved without paying
attention to the irreversibilities? You will be horrified to
learn that we ignore them! At first, we make believe they
aren’t there and assume the process is reversible. This
allows us to work the problem (incorrectly to be sure), but
after we're done we ask how far wrong we are and make
corrections to get realistic but approximate answers.

To see how this works, we’ll take a specific example—the
Otto engine cycle. This cycle is an idealization of what goes
on in virtually all gasoline engines. The engine which fol-
lows this cycle was constructed by Nikolaus Otto in 1876.
Otto did not invent the internal-combustion engine, but
he made it practical by devising a cycle by which it could
operate in an efficient manner. (Incidentally, it was first
used to power an automobile by Karl Benz in 1885, and it
was another 10 years before Henry Ford made his first car.
Ford’s contribution was mass production, which started
with the Model T, introduced in 1908. But let’s get back to
the Otto engine cycle.)

One imagines a piston and cylinder containing air. The
piston rod is connected to a crank which drives a shaft and
flywheel in rotary motion, but it's the process going on
inside the cylinder that interests us, for that is where the
action is. We imagine that the piston slides in the cylinder
without friction and that all processes are carried out re-
versibly. The changes which occur in the air within the
cylinder are depicted in Fig. 3-1, which shows a graph of
air pressure vs. cylinder volume. The piston, of course, goes
back and forth within the cylinder, and when the engine is
in continuous operation, the air goes through a series of
steps which constitute a cycle, as shown in the figure. At
point 1 the piston is at its point of maximum withdrawal
from the cylinder, which is full of air at about atmospheric
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pressure. In an actual engine an amount of gasoline vapor
is mixed with the air, but in the idealized process used to
analyze the cycle this is neglected. The piston is carried
into the cylinder during step 1-2 by the inertia of the fly-
wheel, which provides the work W;,, and the air is com-
pressed in what is imagined to be a reversible, adiabatic
process. When the piston reaches the limit of its stroke at
point 2, heat is added to change the conditions of the air to

©)
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Figure 3-1 Otto engine cycle.

those represented by point 3. This heat addition, called Qis,
causes the same change as the combustion of the gasoline
in an actual engine. Since this is a rapid process, the heat
is imagined to be added very quickly during the instant
that the piston remains in its limiting position. Both the
pressure and the temperature at point 3 are much higher
than at point 2. The gas now expands against the piston
during step 3-4, doing work W,y in what is imagined to
be another reversible, adiabatic process. At point 4 we
imagine that the heat Qo is very quickly removed from
the gas to restore the conditions of point 1. In an actual
engine, the exhaust valve opens at point 4, and the hot
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gases rush out of the cylinder. In addition, the actual engine
goes through an extra cycle (represented by the horizontal
dashed line) which produces no work. The purpose of this
is to push exhaust gases from the cylinder (step 1-0) and
to draw in fresh air and fuel (step 0-1). The net result is to
return the system to state 1, just as is done by the single
step 4-1 in our idealized cycle.

We now are ready to do a few calculations, but we must
first specify certain conditions for our cycle. It is reasonable
to assume that air behaves essentially as an ideal gas under
the conditions which exist for the cycle, and we will take
its heat capacity at constant volume, Cy, as constant at
5 Btu/lb mole—°F. This makes the ratio of heat capacities
v = Cp/Cy = 74 = 1.4. The conditions at point 1 are
taken to Be P; = 1 atm and 7, = 140°F (600°R). The com-
pression ratio of the engine is such as to make P, = 15 atm,
and sufficient heat is added in step 2-3 to make T; = 3940°F
(4400°R). Nothing further need be specified to allow calcu-
lation of-everything we need to know about the idealized
Otto engine cycle. The temperature at point 2 is deter-
mined by applying the following equation (valid for a re-
versible, adiabatic compression of an ideal gas with con-
stant heat capacities) to step 1-2:

P,\(r-Diy .
T,=T (17) = (600)(15)*-28¢ = 1300°R (840°F)
1

Calculation of T is similar because step 3—4 is a reversible,
adiabatic expansion. However, it is simpler to use the equa-
tion connecting T and V for such a process; thus we have

T _ (VLY
Ty \V.

But the analog(‘)us equation for step 1-2 is

Ty _ (V™ (Vay
T2— Vl B V;
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The last equality comes about because V, = V, and
Vi = V. Thus, by comparing these two equations, we have

T, = T,%—: = (4400)(¢9%¢500) = 2030°R (1570°F)

The following list summarizes the temperatures at the
various points of the cycle:

T: = 600°R (140°F)
T. = 1300°R (840°F)
T; = 4400°R (3940°F)
T« = 2030°R (1570°F)

These temperatures are all we need for calculation of the
work and heat quantities associated with each step. For
an ideal gas with constant Cy, the internal energy change
is always given by AU = Cy AT. From the First Law,

- AU=Q-W
Therefore
CvAT =Q — W

Now either Q or W is zero for each step of the eycle. Two
steps are adiabatic, and @ = 0; two steps are at constant
volume, and W = 0. Thus we have

Step 1-2: le = 0 Wn = —CV AT

= —5(1300 — 600) = —3500 Btu
Step 2-3: ‘sz =0 Qza = CV AT

‘ = 5(4400 — 1300) = 15,500 Btu

Step 3_4: . Qa‘ = 0 W34 = —CV AT

= —5(2030 — 4400) = 11,850 Btu
Step 4-1: Wyu=0 Qu = Cy AT

= 5(600 — 2030) = —7150 Btu
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All of these results are shown on Fig. 3-2. The total work of
the cycle is Woyao = —3500 4 11,850 = 8350 Btu.

T,= 3940 °F

Qin= W, =11,850
15,500
T2= 840°F
-}
p T,=1570°F
* Qout=—7,150
| — — -
|
Win="3,500 T,=140°F
14

Figure 3-2 Results for idealized Otto cycle.

The' thermal efficiency of the cycle  is defined as the
ratio of the work of the cycle to the heat added; that is,

— chele _ chcle _ 8350

"= 0. 0. ~ 15500 ~ 054

This means that only 54 percent of the heat added to the
engine is converted into work. The remaining 46 percent
leaves the engine as heat Q.u = Qu = —7150 Btu. This
result is obtained for an ideal cycle, considered to operate
reversibly. We can think of no way to improve this result
for the same conditions of operation.

Now an actual engine will not execute the idealized cycle.
The compression and expansion steps will be neither re-
versible nor adiabatic. The work output of the engine will
be considerably less than the work we have calculated for
the idealized cycle. One way to estimate the work of a real
engine that accomplishes the same changes of state as oc-
curred in our ideal cycle is to assign an efficiency to each

~
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of the steps of the cycle. For steps that produce work we
define our efficiency so that it gives the ratio of the actual
work produced to the reversible work; that is,

efficiency = Woroa/Wiev

This efficiency is always less than unity, and it is a measure
of the extent to which irreversibilities reduce the work
output in comparison with the maximum possible work.
For steps that require work, the reversible work is the
minimum necessary, and irreversibilities can only serve to
increase the work requirement. Thus we define our efficiency
in this case as Wiey/Wreq. Again the efficiency is always less
than unity.

The only basis on which we can assign a numerical value
for an efficiency is experience, either our own or that re-
corded by others. In the case of compression and expansion
processes, experience shows that an efficiency of about 0.75
is a‘reasonable figure. Thus for step 1-2, where W, is
required, we can now estimate a reasonable value as follows:

_ W _ —3500 _

le = 0.75 = WB— = ~4670 Btu

~ From the First Law we have

‘ Cv AT = Qi3 — Wy,
or =~ == ¢

Q12 = Wy + Cy AT
Q1; = —4670 4+ (5)(1300 — 600) = —1170 Btu

Thus we see that the actual irreversible process cannot be
adiabatic, and 1170 Btu is transferred from the gas in the
cylinder to the surroundings. Nor is this in any way un-
reasonable in view of the elevated temperatures of the gas
and the fact that a real engine is cooled by either water
or air,
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The expansion step 3—4 produces work, and we calculate
an estimate of the actual value as follows:

Wi = (0.75)Wrey = (0.75)(11,850) = 8900 Btu

Again we calculate the heat transferred by the First Law;
thus

Q34 = W34 + CV AT )
Qss = 8900 + (5)(2030 — 4400) = —2950 Btu

The actual expansion is also seen to result in the transfer
of heat from the gas in the cylinder to the surroundings.
This heat transfer is even larger than that for step 1-2
because the gas temperatures are higher. Steps 1-2 and
3-4 are the only ones involving work, and the work of the
engine is the sum of Wy, and W ss; we then have

Wengine = —4670 + 8900 = 4230 Btu

The thermal efficiency of the actual engine is again given
by the net work Wengine divided by @3, the heat added to
the engine (by burning fuel), as follows:

_ Wengine _ 4230
K Q2 15,500

The irreversibilities which we have assumed to exist in our
engine by taking an efficiency of 0.75 for each of the steps
of the eycle have reduced the thermal efficiency » by a fac-
tor of 2, afid a value of 7 = 0.27 for a real engine operating
on the Otto cycle is a reasonable value for a well-tuned
engine operating under conditions for which it was designed.

Whether you realize it or not, we have been talking about
a heat engine (this is a particular kind of heat engine known
as an internal-combustion engine, but it serves to introduce
the general topic of heat engines). The topic is of importance
since more than 90 percent of our power is supplied by heat
engines, and no one expects heat engines to become any less
important in the foreseeable future. There is great interest

= 0.27
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in the development of new kinds of heat engines, but the
expectation is that most of our power will continue to come
from some kind of heat engine. Nuclear power plants, mag-
netohydrodynamic generators, thermoelectric generators,
thermionic generators, jet engines, and rockets are all heat
engines and are subject to the same thermodynamic analy-
sis as is the internal-combustion engine.

It all began about the year 1700. A couple of steam pumps
were invented a few years earlier, but the first real steam
engine was invented by Newcomen in 1712. It was a most
inefficient contraption until James Watt, starting 50 years
later, introduced a number of innovations which made the
steam engine a practical device. Thus Watt did for the
steam engine what Otto was to do 100 years later for
the internal-combustion engine. Watt not only developed
but also manufactured the steam engine, which became
widely used. Fulton’s steamboat, the Clermont, was driven
by one of Watt’s engines on its trips between New York
and Albany starting in 1807.

In 1824 a young Frenchman named Carnot published a
paper on the motive power of heat, the first theoretical con-
sideration of heat engines. The steam engine was well known
to Carnot. He knew that it had been made increasingly
efficient over the years, and he wondered whether there was
some limit to its improvement. He appreciated that real
steam engines leaked steam and that friction reduced their
efficiency. -So he imagined the ideal engine, one that we
would call reversible, then he formulated the problem in
exactly the right way. This was his stroke of genius, for
once having recognized the problem, he could hardly have
failed to solve it.

Imagine that we build a fire under some object so that
we may keep it at a constant temperature Ty well above
the temperature of the surroundings at T¢. Thus both the
object and the surroundings constitute heat reservoirs at con-
stant temperature. Now we wish to operate a reversible heat
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engine in such a way that it takes in heat at the tempera-
ture Tx and only at Tw, and discards heat, if this is neces-
sary, at T¢ and only at Tc¢; the engine is to operate con-
tinuously. We must answer the following question: must
heat be discarded at T¢, and if so, how much? We imagine
our engine to consist of the familiar piston-and-cylinder
arrangement containing a gas as the working medium. Since
the engine is to perform continuously, the piston and eylin-
der with its contents must periodically return to their initial
states, i.e., the engine must operate in a cycle. The state-
ment of the problem imposes restraints on what kinds of
steps the cycle may contain. We said that heat transfer
may occur only at the temperatures Tx and Tc. Thus any
steps during which heat may be transferred must be iso-
thermal, either at Tw or at T¢, and any other step must
then necessarily be adiabatic. The cycle must consist of
steps which represent isothermal processes at Tx and T¢
and of steps representing adiabatic processes between these
two temperatures. The only possible such combination of
steps representing a work-producing cycle is shown in Fig.
3-3a. Starting at point 1, where the piston is_at the inner
limit of its stroke, we have the apparatus in thermal equi-
librium with the hot reservoir at Tx. The gas now expands
reversibly and isothermally, doing work against the piston
as it follows the path 1-2. During this step, heat Qu must
be added to the gas in order to keep the temperature con-
stant at Fg. If heat were not added during this process,
the temperature would drop because the work of expansion
would be produced at the expense of the internal energy of
the gas, and this decrease in internal energy would be re-
flected by a temperature decrease. This is exactly what
happens in the next step of the cycle, step 2-3, where the
gas expands reversibly and adiabatically. At point 3 the
piston has reached the outer limit of its stoke and must
begin its return. The path of the process could just retrace
that already followed, but this would require exactly the
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work done in steps 1-2 and 2-3, and the engine would then
produce no work. The only alternative is to follow the path
3—4-1. During step 3—4 the process is reversible and iso-
thermal at temperature T'¢. It is a compression process and
requires work. This work input would raise the temperature
of the gas if no heat were transferred to the cold heat reser-
voir at T'¢. Thus the heat Q¢ must be extracted to make the
process isothermal. At point 4 the heat transfer is inter-
rupted, and the remaining compression step 4-1 occurs re-
versibly and adiabatically. The cycle of steps encloses the
shaded area of Fig. 3-3a, and this area represents the fPdv

Heat reservoir
at Ty

Heat reservoir

(a) (b)

- & ¢

Figure 3-3 The Carnot engine cycle.

taken around the entire cycle; this is the net work of the
engine as it executes one complete cycle.

Figure 3-3b is a schematic diagram which shows the vari-
ous energy exchanges accomplished by the Carnot engine.
The First Law applied to the engine shows that

AU = Qg+ Qc— W

where AU is the internal energy change of the engine itself.
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However, for a complete cycle, AU must be zero because
the engine returns to its initial state. Thus

W = Qu + Q¢
and the thermal efficiency of the Carnot engine is given by
W Qu+ Qc Qc
rno _— e I e—,— s 1 —
Towmot = 0 = = Qi + O

Since Q¢ represents heat leaving the engine, it has a nega-
tive value, and » is seen to be less than unity.

The only physical parameters specified for the Carnot
engine cycle were the temperatures Ty and T¢. Therefore,
it seems clear that the ratio @c/Qu can depend only on Ty
and T¢. The nature of this dependence turns out to be very
simple and is provided by the equation

—Qc _ T¢

Qu Tan (3-1)
This is proved in virtually every thermodynamics textbook
ever written, and the proof will not be repeated here. The
consequence is that we obtain the following very simple ex-
pression for the thermal efficiency of a Carnot engine:

NCarnot = .1 — 'T; (3-2)

We can now answer our initial question (must heat be
discarded at. T'¢, and if so, how much?). Equation (3-1)
shows that

Q= — 750

Thus, for given values of Qr and T4, Q¢ depends only on
the temperature of the cold reservoir T, and this is limited
by the temperatures naturally available to us. These tem-
peratures are well above absolute zero, and we have no
practical means by which to reduce Q¢ to a negligible value.
This means also, as seen from Eq. (3-2), that the thermal
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efficiency of a Carnot engine, operating between tempera-
tures that can be realized in practice, cannot approach
unity. This conclusion, reached through a study of Carnot
engines, applies equally to heat engines of all kinds. The
Otto engine, considered earlier, is certainly no exception,
for the efficiencies we calculated were well below unity.
Thus all heat engines convert only a part of their heat in-
take into work and discard the remainder to the surround-
ings. This limitation on heat engines is not contained within
the First Law of Thermodynamics. Nor does it result from
imperfections in the engines, for we have found it by ex-
amining processes carried out reversibly, that is, as per-
fectly as we can imagine. This suggests that there must be
a Second Law of Thermodynamics which imposes limits
not expressed by the First Law. There is indeed a Second
Law, and we will consider it in detail in a later chapter.
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Power Plants

In the last chapter I brought cut some of the fundamental
properties of heat engines. Now let’s see how these may be
used to make some very elementary calculations with re-
spect to a stationary power plant that generates electricity
by expanding steam through a turbine. The basic scheme
for operation of such a plant is shown in Fig. 4-1. There are
four primary devices in the power cycle. The boiler serves
to convert liquid water into steam at a high pressure and a
high temperature. This requires heat from some high-tem-
perature source; this heat is shown as Qm. The steam so
generated is fed to a turbine which drives an electric gener-
ator. This turbogenerator set is, of course, the heart of the
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power plant. Steam expands through the turbine and ex-
hausts at a low pressure. This expansion process occurs adi-
abatically and is as nearly reversible as possible, thus pro-
viding the motive power to drive the turbine. The exhaust
from the turbine enters a eondenser, which is water-cooled,
and this causes the steam to condense and the heat Q¢ to
be removed. The liquid condensate is then pumped into
the boiler where it is revaporized. A small fraction of the
work of the turbine is required to operate the pump.

The heat @ required by the plant may be supplied either
by burning a fossil fuel, such as coal or oil, or it may come
from a nuclear reactor. It makes little difference to the
operation of the steam cycle shown in Fig. 4-1. This cycle

i
‘ ‘ Steam ot 550°F
Boiler and 1,045 psia

Work to pump  ~—-———=—--- -~ +>W
Pump C}_or_ to pump _ - Turbine e

Generator
Condensate -\ Condenser
at 100°F T
and 1 psia .. i Qc .

Figure 4-1 Steam cycle for stationary power plant.

departs only slightly from that of a Carnot engine. The
boiler and condenser accomplish changes which are largely
isothermal at the boiler temperature Ty and at the con-
denser temperature Tc. The processes within the turbine
and pump are as nearly adiabatic and reversible as they
can be made.

One may wonder why the steam from the turbine is not
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simply discarded to the atmosphere. Fresh water would
then be fed continuously to the boiler. There are several
reasons why this is not done. In the first place, it would
mean that atmospheric pressure would be the lowest pres-
sure to which steam could be expanded. When a condenser
is used, the system is closed, and the condenser pressure
(at which the turbine exhausts) can be maintained at values
well below atmospheric. This extra expansion of the steam
allows the turbine to do more work. Equally important is
the fact that the water used in the steam cycle must be
very pure. The reason is that all dissolved solids are left
behind in the boiler when the water is vaporized. Any ap-
preciable accumulation of such solids would foul the heat-
transfer surfaces of the boiler and would eventually plug
the boiler tubes. Thus any water added to the system must
be carefully purified, and this is an expensive process. As a
practical matter it is necessary to use the purified water
over and over. Finally, the steam circulation rate, as we
shall see shortly, is by no means small, and to discard the
spent steam to the atmosphere could severely affect the
humidity for miles around. Of course, condensation of the
steam in the condenser means that a large quantity of heat
Q¢ must be discarded to the surroundings, usually to a
river; there are problems with this, too, and I'll return to
them later.

Let’s be specific and consider a modern nuclear power
plant typical of about 50 such plants now in various stages
of design and construction in this country. The typical plant
has a rated capacity of some 750,000 kw, or about a million
horsepower. Steam is generated in the boiler at about 550°F
and 1,045 pounds per square inch absolute pressure (psia).
The condenser operates at about 100°F and 1 psia. These
values are shown on Fig. 4-1. Thus the heat source for
operation of the plant, that is, the nuclear reactor which
supplies Qu, must be maintained at a temperature Ty of
at least 550°F (or 1010°R), and the heat sink, that is, the
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surroundings which absorb the heat Q¢ rejected by the con-
denser, must have a temperature T'¢ of no more than 100°F
(or 560°R). For a Carnot engine operating between these
two temperatures the thermal efficiency would be

w T

¢

S0 T Ta
Thus at best our power plant could convert only 44.5 per-
cent of the heat taken in from the nuclear reactor @4 into
work, and the other 55.5 percent would have to be dis-
carded to the surroundings as Q¢. No actual plant can possi-
bly be as efficient as a Carnot engine, which presupposes
perfection. So we will take n = 0.30 as a realistic value for
the thermal efficiency of our plant. Since by definition

=1—560{g;0 = 0.445

w
7 =030 = o
we have
Qn = W (750,000 kw) <57 Btu/min
H7030 0.30 kw
= 1.42 X 108 Btu/min
and

Qc = (0.1Qx = (0.7)(1.42 X 10%) = 1.0 X 10* Btu/min

The difference between these two heat rates is the rate of
produection of work, 0.42 X 10® Btu/min, which corresponds
to a power output of 750,000 kw.

Now from data for the heat of vaporization of water, we
know that about 1100 Btu is required for each pound of
water entering the boiler and vaporized there. Thus the
steam circulation rate is

. 142X 108 Btu/min

- 5
1100 Btu/Ib 13X 10

or 130,000 1b/min or 65 tons/min. This confirms my earlier
statement that the steam rate is no small number. You may
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think that this is a heat engine on too grand a scale, but I
reiterate my earlier statement that about 50 such nuclear
plants are now under construction or design. Moreover,
about 50 additional plants depending on fossil fuels are also
under construction or design. Each such plant costs upwards
of $100 million. Moreover, these plants are designed around
a single turbogenerator; one unit produces 1,000,000 hp.
Such a turbogenerator set weighs more than 2,000 tons and
occupies a space on the order of two-thirds of a football field.

How big must the pipe be that supplies steam to such a
turbine? For steam at 550°F and 1,045 psia, the specific
volume is about 0.42 ft3/lb, and a reasonable velocity for
high-pressure steam in a pipe is 75 ft/sec. The volumetric
flow rate of steam is given both as the product of the veloc-
ity u and the cross-sectional area A of the pipe and as the
product of the specific volume V of the steam and its mass
flow rate m. Thus ,

" Vi

ud = Vm or A =—
u

and
_ (0.42 ft3/1b)(130,0004, 1Ib/sec) _

2
75 ft/sec 12.1 ¢

A

A pipe 4 ft in diameter has just a bit more than this cross-
sectional area. A more suitable choice would be a design
with four pipes 2 ft in diameter. If this seems large, con-
sider the exhaust duct of the turbine, which carries steam
that has expanded to a specific volume of about 300 ft#/lIb.
Higher velocities are allowed here, and we take a value of
500 ft/sec to be reasonable. Thus

Ve _ (300 ft?/1b)(189:0094, 1b/sec)
v 500 ft/sec

This requires & duct some 36 ft square to connect the tur-
bine with the condenser.

We can calculate still other quantities. For a nuclear
power plant the heat Qx comes from the reactor core at

4= = 1,300 ft?
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the expense of mass, according to the formula ot
—c?Am
Qu = 7

where g. is a dimensional constant equal to 32.17(Ib mass/
Ib force)(ft/sec?). Thus

— QH Je
CZ

(_ 1.42 X 10° %) (778 ft-1b force) <32.17 Mt_)

Am =

min Btu Ib force-sec?
108 ft2/sec?

Am = —3.5 X 10~¢ Ib mass/min or about —2 1b/year

This is a figure one would need before designing the nuclear
reactor, along with a lot of additional information.

The heat discarded by the condenser, Q¢, must go some-
where and is almost always dumped into a river. No small
river will do, as the amount of heat involved is enormous,
on the order of 10 or 100,000,000 Btu/min. Consider, for
example, the upper Hudson river, which has been con-
sidered as the site for a nuclear plant. The average flow
rate of the Hudson is about 5,800 ft3/sec or about 0.22 X
10 Ib/min. Each pound of river water will be raised in
temperature 1°F for each Btu of heat it adsorbs. Thus in
absorbing 1.0 X 10 Btu/min the 0.22 X 10% lb/min of
river water will rise in temperature by

8
Ap - 10X 10

=o0mxio - OF

The flow rate of the Hudson River is controlled, and if the
minimum flow rate is held above 3,600 ft?/sec, the maxi-
mum temperature rise of the river would be about 7°F.
Of course, not all of the river is diverted through the con-
denser of the power plant, but the temperature rise of the
water flowing through the condenser is limited because the
water temperature cannot exceed the condensation temper-
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ature of the steam, about 100°F. If about 20 percent of the -
river is diverted to run through the condenser, the temper-
ature rise of this portion of the river is

_ 1.0 X 108
~ (0.22 X 10%)(0.2)

For river temperatures below 70°F, this temperature rise is
quite acceptable. When returned to the river, this hotter
stream is diluted by the undiverted portion of the river to
produce the overall temperature increases of the river al-
ready calculated. The river water used to absorb the dis-
carded heat of the plant must be pumped through the con-
denser, and this requires a considerable expenditure of work.
In fact, the work required to run the plant itself amounts to
something like 50,000 hp.

If this power plant were coal-fired rather than a nuclear
plant, the quantities we have calculated would be little
different. We would have essentially the same amount of
heat to discard, and the temperature rise or “thermal pol-
lution” of the river would be about the same. But there are
other considerations. To supply the heat Qx with coal hav-
ing a heating value of 12,000 Btu/lb (a usual value) would
require the burning of coal in the amount of

'1.42 X 10% Btu/min
12,000 Btu/lb

AT = 22.5°F

= 12,000 lb/min

or about 6 tons/min or 3,100,000 tons/year, ‘and this
assumes that the entire heating value of the coal can be
used, which it cannot. The sulfur content of coal used to
fire power plants averages about 214 percent, and the com-
bustion of this coal at the required rate would produce some
600 1b of sulfur dioxide per minute. This noxious gas would
enter and pollute the atmosphere continuously. Thus the
coal-fired plant would cause both thermal pollution and
air pollution.

This brings me to a very important matter. What are the
consequences of building and operating a nuclear power
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plant such as I have described? I should remark at once
that it is the purpose of engineering to build and operate
such plants—to build and operate many different kinds of
plants, all of them having an end product which is in some
sense useful to mankind. Thus one consequence of build-
ing a power plant is the continued supply of ample power
at a reasonable cost. Other less desirable consequences come
as by-products. Pollution is one of these by-products, and it
was until recently largely ignored. Thirty years ago hardly
anyone thought that industrial plants, built to produce the
things people need, want, or think they want, could possi-
bly have as a side effect the alteration or pollution of the
environment to a significant and serious extent. But the
rapid growth of both population and affluence has now
made this a major concern, and no engineer can ignore it.
Yet it presents a dilemma, which is illustrated by our
consideration of power plants. The utility companies would
hardly be constructing billions of dollars worth of power
plants without the conviction that the public will demand
the output of these plants. Even the most ardent conser-
vationist would be indignant if told his electric power con-
sumption would be rationed because the utility companies
had decided not to increase generating capacity because of
the danger of greater pollution. Actually, nuclear power
plants do not contribute to air pollution, but there seems
to be no way to prevent thermal pollution. You may say
that one Mmore power plant on a given river that raises its
temperature a mere 4 or 5°F can hardly be a serious prob-
lem, and you are probably right. But where in 5 years do
we build the next plant, and the next, and the next? We
see no early voluntary end either to increasing population
or to greater demand for more and more of the products
of engineering technology. Various governmental agencies
have embarked on extensive and expensive plans to clean
up our rivers. Is this being done so that we can turn them
into steaming heat sewers in which and along which nothing
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but algae can grow? I am not suggesting that any single .

plant presents a clear and present danger. I am pointing to
a problem that will become critical in the foreseeable future.
It is just one of the extraordinarily difficult problems
brought into being by our expanding industrial society and

one which will be left to the next generation to solve. It’s a ‘

problem that owes its existence to the Second Law of

Thermodynamies, to which I will direct attention in subse-
quent chapters.

Q(\

A

BIBLIOTEC

C.E. L

c. V.




WO ES 5l S ¥ ™

—

X
5
&

he Second Law of
Thermodynamaics

It is essential at this point that we consider the Second Law
of Thermodynamics. If you have already studied this sub-
ject from the traditional point of view, no harm is done.
Our perspective departs somewhat from the traditional,
but the conclusions reached are the same.

We can ask right at the start why we should be looking
for a Second Law at all, and this takes a little explaining.
It is a matter of everyday experience that certain processes
do and certain processes don’t occur in the world. It's very
easy to give simple examples. For illustration, I will con-
sider two types of processes. The first is strictly mechanical
in nature and makes use of our old standby, the piston and
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cylinder. We will consider adiabatic processes carried out
on a gas in this apparatus.

(b)

Figure 5-1 Adiabatic mechanical process.

Figure 5.1a shows a gas confined by a piston held by
latches. If the latches are removed, we have no doubts
about what will happen. We need no law to tell us that
the piston will move right and not left. Of course, such a
process does nothing for us, but we readily see that we can
put it to use by opposing the motion of the piston by a
force on its right side (see Fig. 5.1b). Now if the force is
very small, we will get very little work. As the force is in-
creased, we get more and more work. But there is a limit,
and this comes when we make the force equal to PA. Now
we have a balance of forces, and we know that nothing will
happen. But if this force is reduced differentially, we get the
maximum possible work out. We have already characterized
this process as reversible, and we know that Wiy = [P dV.
On the other hand, if the force is made differentially larger
than PA, then the piston moves to the left, and work is put
into the system. Again we have a reversible process with
Wi given by [P dV. If the force is increased further,
latches are required on the opposite side of the piston to
hold it, and again we know the direction the process will
take if the latches are removed. In this case the work done
on the gas will be greater than the reversible work. We see
a whole gradation of processes, and we see the uniqueness
of the reversible process. It represents an upper limit for
the expansion process which produces work and a lower
limit for the compression process which requires work, and
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thus it serves as a point of departure for discussion of
processes in either direction.

The second type of process is thermal and makes use of
the heat engine, which we have already discussed exten-
sively. The process involves the transfer of heat between
two heat reservoirs held at the temperatures Ty and Tg,
where Ty is greater than T¢. In Fig. 5.2a we see the two

(a)

Figure 5-2 Thermal process.

heat reservoirs separated by a perfect insulator. If the insu-
lator is removed, we have no doubts about the direction of
the heat flow. Again, such a process does no work, but we
can make use of it by interposing a heat engine between
the two reservoirs. Now the heat engine must have a part
to which heat is added and a part from which heat is dis-
carded, and we will assume these are maintained at the
temperatures T’y and T (see Fig. 5.2b). For a stationary
power plant these parts would be the boiler and the con-
denser. If the engine itself is reversible, then

and the amount of work done will depend on the tempera-
ture differences Ty — Ty and Ty — Ty, or equivalently on
the difference T — T¢. If Ty = T, then no work is done,
and the process occurs just as if the engine were not there.
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As Ty — Ty becomes larger, more and more work is done. .

However, there is a limit, and this is reached when T3 and
Tt become almost equal to the reservoir temperatures Ty
and T¢. When this happens the process is reversible, and
we realize the maximum amount of work. At this point we
may reverse the entire process, putting work into the proc-
ess and transferring heat in the opposite direction. This re-
quires only that T¢ be less than T¢ and that T be greater
than Ty by differential amounts. We then have a reversible
heat pump or refrigerator, one that requires the minimum
work for a given refrigeration effect. If we go further and
make T¢ < T¢ and Ty > Ty by finite amounts, then the
process becomes irreversible again, and the required work
increases. Again we see a whole gradation of processes, with
the reversible process appearing as unique.

These two types of processes, one mechanical and the
other thermal, are clearly different. Yet the intriguing thing
is that we can say the same kinds of things about both. In
each case we readily see the cause of the process and can
correctly predict the changes that will occur—the “direc-
tion”” of each process. In each case we see how to make the
process reversible so that it produces the maximum work.,
We also see how to carry out the reverse process, both
reversibly and irreversibly. The reason everything is so
obvious is that each process is a part of our experience.
As long as we talk about simple processes that are readily
connected to our previous experience, we can rely on that
experience to predict what will happen. Difficulties arise
only when we encounter more complex situations which
have no obvious connection with our past observations.

For example, a man might walk in here with s box 2 ft
long and 6 in. on a side and say, “Look here, I've got a
box of tricks! See this pipe sticking out the top and the
pipes sticking out either end? If you hook a compressed-
air line to the center pipe, cold air will come out the left end
and hot air will come out the right end. How about that?”’
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y— Compressed air -
. n R
Cold air ~=— ={ Box of tricks }=="’H01 air
Figure 5-3

Can it work, or can’t it work? Unless you have seen it
before, you can only guess, and you will most likely base
your guess on how you size up the man. But there must be
a way to tell whether or not this process can or cannot take
the “direction’” claimed by the man. Somehow we need to
generalize the results of our previous experience with the
simple processes we already know about. And this is the
problem. How do we generalize in a meaningful way when
the things we have observed are all so different in character
from one another? We might look for some easily under-
stood statement in common words that provides an obvi-
ous answer to the question, “Is it or isn’t it possible?”’ But
what statement should we make? A number have been pro-
posed, and I'll give you a few so that you can judge how
directly they relate to the question of whether the box of
tricks the man brought in can do what he says it will:

1. “No engine, operating in a cycle, can convert all the
heat it takes in into work.” Now what connection does
the man’s device have with an engine? He says, in fact,
that it has no moving parts. Moreover, he says it is
thoroughly insulated; thus there is no heat taken in.

2. ““Heat cannot be caused to flow from a cooler to a hotter
body without producing some other effect.” Again, there
is no heat transfer discernible in this box of tricks, and
we see no obvious connection between this statement
and the accomplishments of the device.

3. “Processes occur in a direction so as to progress from
nonequilibrium toward equilibrium states.”” Now who is
to say that two air streams at different temperatures
_but both at atmospheric pressure represent something
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closer to equilibrium than one stream of compressed air *
at a different temperature?

One can surely make a ¢ase that each of these statements
is true. But on which one would you like to stake your
claim that the man with the box of tricks is either a fraud
or a genius? It is very hard to see the relevance of any of
these statements. Moreover, all are qualitative. How could
we use such statements to allow us to make quantitative
calculations? You must be wondering why, if such state-
ments are so useless, they form the starting points for the
traditional treatment of the Second Law. I wonder why,
too, and I'll return to the question later. For the moment
we will forget them and look for another means (one that is
quantitative) by which to make a generalization of our
experience.

The fact that we are looking for something quantitative
suggests that we ought to be looking for a property. But
this property can hardly be obvious, or we would already
be talking about it. It must be a property (like internal
energy) that cannot be directly observed but which is a
function of other variables. How are we to discover such a
property? The only way is to carry out a series of controlled
experiments, making all the measurements we can. Then we
examine the data to see if any consistent pattern emerges to
suggest the existence of a new property.

Thus I ask’ you to imagine another set of experlments
done with our reliable old piston-and-cylinder assembly.
Again, for ease of visualization we take the material con-
tained in the cylinder to be a gas—any old gas; it need not
be ideal. Imagine that we do a whole series of experiments
in which we always start with a fixed amount of gas in our
cylinder at fixed conditions of temperature and pressure,
say, T1 and P,, and in every experiment we change these
conditions to the same final values T and P,. But each
experiment is different from the others in that between the
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initial state 1 and the final state 2 the relation between T
and P, that is, the path, is different from all the others.
We can easily alter the path from experiment to experi-
ment by changing the amounts and relative rates of heat
and work addition or extraction.

It turns out that the only processes for which we can
really make precise and detailed measurements are those
carried out very slowly, those which approximate reversi-
bility. Any process carried out rapidly will cause nonuni-
formities of temperature and pressure within the gas, and
for such a process we cannot know the exact path, or the
precise P-T relation, for we don’t know what P and what
T to talk about. Thus we restrict our experiments to those
carried out reversibly, or almost reversibly. Such processes
are unique, and as we have seen they provide a standard
against which to measure all other processes and a con-
venient point of departure for the consideration of all other
processes.

Thus we carry out various reversible processes by which
we proceed from state 1 of the gas to state 2, and we keep a
careful accounting of all measurable variables from point to
point in each experiment. The apparatus is shown in Fig.

R —Tp.B
Figure 5-4

5-4, and a graph indicating several possible P-vs.-T' rela-
tions or paths appears in Fig. 5-5. Each such path repre-
sents one experiment, and for each experiment we may
make a table, such as Table 5-1, which lists the data taken
as we progress from point 1 to point 2 along any one path
shown in Fig. 5-5.
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Table 6-1*
T P 4 Q:ov Weev
T, P, V. 0 0
| | | | |
i | | ) ]
A v ¢ v \
T, P, V. Qrev W{"
* The superscript f t0 Qv and W, indicates a
final value.
PI ________________________
P
P2 ——————

Figure 5-5

Eventually we prepare many such tables of data, one for
each of the p}f)cesses by which we get from state 1 to state 2.
Having this mass of data, we have a look to see whether
any regularities occur from one set to the next. It doesn’t
take us long to notice that V, and V; are the same for all
processes and thus that AV is the same for all. This is
hardly a surprise, and it merely confirms that V is a prop-
erty of the system and is a function of 7' and P. Or to put it
more elegantly, an equation of state exists connecting P, V,
and T, something we might have assumed from the begin-
ning. The fact that we find it to be so does give us confi-
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dence in our experimental methods. Next we notice that
although @/, has different values for all the processes and
although W7, has different values for all the processes, the
difference Q7,, — W/, is the same for all processes. If this
is so, then this difference must be the measure of a property
change between state 1 and state 2. Indeed it is; the prop-
erty change is AU = U, — Uy, the change in internal en-
ergy, and we have rediscovered the First Law of Thermo-
dynamics, that is, AU = Qf,, — W, for the special case
of reversible processes connecting two fixed states. Again,
we learn nothing new, except that our methods do produce
results known to be right. :
Thus far we've only looked at easy things, and we’ve
a long way to go before we exhaust the possibilities. We
can plot T vs. P, T vs. V, Pvs. V, T vS. Qrev; T VS. Wiev,
P vs. Qrev, and P vs. Wyey. Then we examine the graphs for
some clue to the existence of a property. Perhaps some
particular plot gives curves which all have the same area
below them. However, as a matter of fact, we find nothing
of the sort; so we get more subtle or more desperate and we
start plotting reciprocals, and after a while we find some-
thing. Plots of 1/P vs. Wiy all have the same area below
the curves! Here at last is what we’ve been looking for.

_ <
9.5;-:-3."555{{%{:{{(:»/‘ \
E.O.«:.«::x:iggzto:o:.: oS

revy

Figure 5-6
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If all the areas are the same, this means that
Ife' .
ﬁ)w (1/P) dW,ev is the same for all processes. Now,

whenever we find a quantity that is the same for all proe-
esses between two fixed states, we know the quantity is
independent of the path and must depend only on the
initial and final states of the system. Thus the quantity
must measure a property change of the system. All that re-
mains is to give the property a symbol and a name. We
will use the symbol X and name our property the Xtropy
function. Now we can write

[ 1—,} AWrey = AX

and we're pretty pleased with ourselves. But wait a minute.
Now we notice that our value of AX is the same as AV.
Is our Xtropy just the volume? It’s easy enough to find
out. Substitute AV for AX in our equation and see if it
reduces to a known result; thus

. 1 _ A
. / P dWrev e AV
or in differential form

d—v;,_,"—"=dV or  dW.w = PdV

something we knew all along. So we've just rediscovered
the volutne, and all our work was for nothing. Well, not
quite. We’ve actually seen something very important. It is
that we could have discovered the existence of the property
we call volume in this way. But we would not be able to
give an explicit definition of it. All we would have is an
equation, dV = dW,.,/P, which tells us how to measure
changes in this property. And if we were not able to meas-
ure volume directly and had to get along with just this
equation, we would probably come up with some profound
law, perhaps the law of volume conservation. This is exactly




60 Understanding Thermodynamics

what happens with internal energy. We cannot measure or
define it. We have merely an equation that tells us how to
measure its change, dU = dQ — dW, and we have the law
of energy conservation.

So it’s back to the drawing board, but we do get an idea
from all this. Since T is related to @ in a way quite similar
to the relation between P and W, we guess that it might be
interesting to plot 1/T vs. Q.. for the various experiments
we have made. So we do it, and sure enough the areas be-
low these curves are all the same. Again we conclude that
the quantity
[ 3 dQur

0

must be the measure of a property change. We decide to

give the property the symbol N and to call it the Ntropy

function, or more simply the Ntropy. Thus we write
1
/ Terev = AN

By now we are pretty wary, and we think perhaps we
have again rediscovered something we already know all
about. But this time we have not. This property Ntropy
is really new, and we know nothing more about it than
what we have just found. We have no definition for it; we
have_only an equation telling us how to calculate changes.
But we do know one very important thing: it is a property
of the material in our cylinder and is a function of the con-
ditions T and P. We know exactly as much about it as we
do about internal energy. The only difference (and this may
be the reason that energy seems less abstract) is that energy
has several forms. We have not only internal energy but

" also potential and kinetic energy; however, there is no po-

tential or kinetic Ntropy, just internal Ntropy.
Now it happens that symbolism is a very delicate matter
among thermodynamicists. When they can’t argue about
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anything else, they argue about that. And the symbol ¥
we have taken for our new property turns out to be un-
acceptable. Forced to find another symbol, they agreed on
S, perhaps the only complete agreement in the entire sub-
ject. But they kept the name, adding an initial ‘‘¢”’ for the
sake of euphony. Thus we have § = entropy, and

1
/ 'T erev = AS
or in differential form
Wt 4§ or  dQuy = TdS

Thus we have a new property, but we have not yet deter-
mined whether it has anything to do with the ‘“directions”
of processes. That was, after all, what we wanted a new
property for. Let’s return to the two processes we considered
earlier. The first was a mechanical process—adiabatic ex-
pansion and compression. Consider first an -adiabatic, re-
versible expansion. Since the process is reversible, we may

use the equation
a8 = [ d—%”

and since it is adiabatic, dQ.e, is zero. Thus AS = 0, and
the process occurs at constant entropy; it is ssentropic. We
may represent the path of the process by a curve on a graph
of P vs. T. Tt is shown on Fig. 5-7 as the solid curve drawn
from point 1 to point 2. How would the process be changed
were we to start again at point 1, but this time carry out
an irreversible but adiabatic expansion to the same final
pressure? We cannot really show the path of an irreversible
process on our graph because there is no single P and no
single T which apply to the whole system at any point of
the process. So I have shown a series of hatch marks to
represent a sort of average course for the process. It is,
however, only the final state 3 reached by the system that
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Figure 5-7 Adiabatic expansion.

really interests us. Since the process 1-3 is irreversible, it
must produce less work than the reversible process 1-2. For
an adiabatic process AU = —W. Thus the irreversible
process causes a smaller decrease in the internal energy of
the gas than does the reversible process and consequently
a smaller temperature decrease. From this we see that
T3 > T, Thus we could change from state 3 to state 2 by
removing heat reversibly to decrease the temperature, and
the resulting entropy change would be

AS=S,—S;=/§Q%

<. ?
Since dQ.. would be negative (heat removed), S; > S:. On
the other hand, the reversible process occurs at constant
entropy; thus S; = S;, and therefore S; > S1. These re-
sults are summarized as follows:

Reversible process, 1-2 Irreversible process, 1-3

8S: =8, S > 8
ASwota = 0 ASitat > 0
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It should be noted that both processes 1-2 and 1-3 cause
no entropy changes in the surroundings because both are
adiabatic. Thus the entropy change of the system is the
total entropy change.

Consider now the reverse process, that is, an adiabatic
compression. This is shown on Fig. 5-8, where the solid

Figure 5-8 Adiabatic compression.

curve from point 1 to point 2 represents the reversible adi-
abatic process, and the hatch lines from 1 to 3 again approxi-
mate the irreversible adiabatic process. For these processes
work is required, and the irreversible process requires more
work than the reversible. Thus AU = — W will be positive
(since work ‘added is negative) and AU will represent a
larger increase in internal energy for the irreversible process
than for the reversible process. This means that Ts > T\,
and again we could change from state 3 to state 2 by simply
removing heat reversibly. Again,

a8 =8 — 8y = [ Lro

and it is negative because dQ..v is negative (heat removed).
So we have Sz > S:. But S: = S, for the reversible process,
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and therefore S; > S;. These results are summarized as
follows:

Reversible process, 1-2 Irreversible process, 1-3
= 8 S: > 8,
AS&,"] = 0 ASwml > 0

Comparison with the results for the expansion process shows
that with respect to entropy changes the same equations
apply to both processes.

The other type of process I described was completely
different in character and was centered around heat engines
and heat pumps. For a heat engine operating reversibly we
have the relation (see Chap. 3)

—Qu _Txu QH Qc
Q@ T TH Te =0
But Qr/Tx is just ASy, the entropy change of the heat
reservoir at Ty, and Q¢/T¢ is AS¢, the entropy change of
the heat reservoir at T¢. Thus we have

ASH + AS¢ = ASwta = 0

Since the engine operates in cycles and returns always to its
initial state, there is no entropy change of the engine.

If the engine operates irreversibly, then it produces less
work than the reversible work and must therefore discard
a larger Q¢ to the cold reservoir for the same heat intake
Qn. Thus for irreversible operation

9y Qe
C

H

because Q¢ is now larger than in the reversible case, and
all other quantities remain the same. Thus for a heat engine
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operating irreversibly

ASx + ASc = ASita > 0
In summary:

Reversible heat engine Irreversible heat engine

AS@oul =0 AS@ohl > 0

For the reverse process, the heat pump or refrigerator,
work is done on the system; heat @¢ flows out of the heat
reservoir at T¢, and heat Qy flows ¢nfo the heat reservoir at
Tx. For reversible operation we have again

T+ e = ASw + ASe = ASiw = 0
The Q’s and AS’s have the same numerical values as for the
reversible heat engine, but they have opposite signs. If the
heat pump is irreversible, then more work must be done on
the system for the same Q¢ removed from the cold reservoir.
As a result, @z must be larger than before, and for irreversi-
ble operation we must have

%‘Z '707—2 = ASH + ASC = AStotnl > 0
Thus for the heat pump as well as for the heat engine we
may write

Reversible Irreversible

AStota1 = 0 AStota > 0

These results for thermal processes are the same as those
obtained for the mechanical processes considered earlier,
and we may summarize all results for both types of process
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by the equation
ASwta > 0

where the equality applies to the limiting process called
reversible, and the inequality to all srreversible processes.
The two types of processes considered were very different
in character, but in spite of this, the same equation has
been found to apply to both. The next step is a bold one;
we generalize our conclusions with respect to these two
types of processes and postulate that this equation is valid
for all processes which occur in the world. We cannot prove
it, but on the other hand, we cannot delay our generali-
zation until we have examined all conceivable processes.
We need the generalization so that we can use it for pre-
diction of the results of processes not yet carried out. We
cannot, of course, be absolutely certain that every pre-
diction will be right, but confidence in the generalization
grows with every successful prediction. During the past
100 years countless predictions have been made, and not a
single one has been wrong. Thus our confidence in the gen-
eralization has grown so that now it is virtually unbounded,
and we regard the above equation as a law of nature—the
Second Law of Thermodynamics.
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More on the
Second Law

In the last chapter I tried to make our ideas about entropy
seem plausible. Now I should like to demonstrate some-
thing of its “usefulness, which results, of course, from the
Second Law. This law is a sweeping generalization to the
effect that for any process the sum of all entropy changes
occurring as a result of the process is greater than zero and
approaches zero in the limit as the process becomes reversi-
ble. Mathematically, we have

Aswtal —>- 0

This generalization was first made by Clausius in 1865.
He simply guessed that it was right and left it for time to
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prove him right. It is the most general statement of the
Second Law, and moreover it is quantitative.

Now let’s go back to see whether our friend’s “box of
tricks’”’ can work. To do this, we will need to calculate some
numbers for entropy changes. This is done most simply for
ideal gases, and there is no need to complicate this illus-
tration by going further. For ideal gases we know two |
things. The equation of state for 1 mole is PV = RT, and
the internal energy change is given by dU = Cy dT. We
will need both of these equations.

We are now interested in the properties of an ideal gas,
and not in any particular process which changes these prop-
erties. Assume for the moment that the properties of 1 mole
of an ideal gas are changed differentially in a reversible
process. By the first law

dU = erev b quv

But dQiev = T dS and dW,,, = PdV. For an ideal gas
. d@U = Cy dT. Thus

CvdT =TdS — PdV

or
TdS = CydT + PdV
But
PV =RT and PdV 4+ VdP = RdT
or
P4V = RdT—-EPZ'dP
Thus

TdS = Cydl + RdT — RT % = (0V+R)dT—RTde’

or
 Tas=Crar —RTE
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and

daT dP

If Cp is constant, we may integrate to get

Py

T,
AS = Cpln———Rl P,

and we have an equation for the calculation of the entropy
changes of an ideal gas with constant heat capacities.
This derivation illustrates the theoretical half of thermo-
dynamics, useful for the calculation of property changes
regardless of the process causing them. We will now use
this result in the applied half of thermodynamics to calcu-
late the entropy changes for the process claimed by our
friend with the box of tricks.

To do calculations, we need quantitative information; so
we press our friend for specifics as to what his device can
do. He says compressed air at 4 atm and 70°F will produce
two equal streams at 1 atm, one at 0°F and the other at
140°F. Thus,

1 Ib mole air . 1 1b mole air
at 1 atm, oo | Box of tricks = o) atm, 140°F
T
2 1b moles air
oot at 4 atm, 70°F g

We may consider the process in two parts. One mole of air
changes from 4 atm and 70°F to 1 atm and 0°F. Taking
Cp = 7 Btu/lb mole-°F for air, we calculate AS for this
change to be

1 460+0 .
A8 =Crln —Rlngt =7l o rmp—2In 34

= 1.79 Btu/lb mole—°R
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Similarly, for the other mole of air we have ot

460 + 140 - P
60 F70 2k
= 3.65 Btu/lb mole-°R

AStot.l = AS[ + ASH = 544: Btu/°R > 0

T P
ASH==CplnT—:—RIn—P—:=7ln

This result shows not only that the process can work, but
that there’s lots of room to spare. After all, AS,... need
only be differentially greater than zero for the process to
be possible. Here it is much greater than zero, indicating
that the process is highly irreversible and hence easy to
make work. Note that we did not know what was in the
box of tricks to determine whether it could work. And that’s
all we have decided—that it is possible. Whether the man’s
particular device will work depends on his ingenuity, that
is, on how good an engineer he is. Thermodynamiecs merely
puts a limit on genius.

It is also true that our friend could have claimed too
much for his device. In the first place he could have pro-
posed conditions that violate the First Law, but he did not.
His claim was that the cold-air stream dropped in temper-
ature by 70°F and that the hot-air stream rose by 70°F.
This is entirely consistent with his claim that equal amounts
of air exist in both streams and that the apparatus is well
insulated. But he could also have claimed conditions that
violate the Second Law. For example, he might have said
that with 2 moles of compressed air at 70°F and 1.1 atm
he could produce 1.6 moles of air at 0°F and 0.4 mole at
350°F, both at atmospheric pressure; thus

2 moles at 1.1 atm,
70°F (530°R)

{
1.6 moles at 1 atm, .
0°F (460°R) +« Box of tricks |-

0.4 mole at 1 atm,
350°F (810°R)
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Again, these figures are consistent with the First Law, for
the cold stream is 4 times larger than the hot stream, but
its temperature change is only one-quarter as much. We
calculate entropy changes of the two streams as before; thus

AS; = my (Cp mnl2_ R %)

1

=1.6 (7 In 469449 — 2 In 111) = —1.28 Btu/°R
ASn —mu(Cp ln——Rln )
=04

(7 In 810440 — 2 In %) ~ 4127 Btu/°R
ASuww = AS; + AS = —0.01 Btu/°R < 0

The Second Law denies that this result can be realized.
Thus we see the need to have a quantitative expression for
the Second Law. Many types of processes are possible only
within limits, and we now have a simple way to determine
the limits.

We might consider how such a device could work, and it
is not difficult to devise a means. If the compressed air is
run through a turbine, the turbine produces work at the
expense of the internal energy of the air. Thus the temper-
ature of the air drops as it expands to atmospheric pressure
in the turbine. This air stream may be split into two parts

- E - P i 2

Hot air
Compressed air at 1 am
at room temperature
Wy Cold air
ST ot 1 atm

Figure 6-1

as shown in Fig. 6-1. The work output of the turbine can be
used to operate refrigerators or heat pumps which extract
heat from one stream and discharge heat into the other.
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The result is a hot-air stream and a cold-air stream. We
can even imagine this process being carried out reversibly.
Clearly, the process is possible not only from a thermo-
dynamic but also from a mechanical point of view.

However, our friend claims his device has no moving
parts, and that is the only feature which now seems remark-
able. As a matter of fact there ¢s such a device, and it is
known as the Hilsch-Ranque vortex tube. It was first invented
in the 1930s by a Frenchman named Ranque, but no one
paid any attention. It was not until the Allies entered
Germany after World War II that these devices became
known. During the war a German by the name of Hilsch
had built a number of them and distributed them in Ger-
man laboratories. Each consisted of a straight piece of tub-
ing or pipe which was divided into two parts by an orifice
as shown in Fig. 6-2.

Orifice

I
1

Cold air =—no A —Warm air
4

Damper
Compressed air

Figure 6-2

Compressed air is fed in through a connection adjacent
to the orifice, but it is introduced in a special way, that is,
tangentially to the tube. This is shown by the eross-sectional
view of the tube in Fig. 6-3. This entering air, expanding
into the tube, reaches fairly high velocities and imparts a

Compressed air — o

Orifice

Tube
Figure 6-3
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rotary motion to the air. This is the reason it’s called a
vortex tube. In expanding into the tube from a high pres-
sure to a low pressure, the air has gained kinetic energy at
the expense of its internal energy. Thus the temperature of
the rotating air mass is lower than the initial air temper-
ature, and it is more or less unpiform over the cross section
of the tube. However, the linear velocity, and therefore the
kinetic energy of the air, varies from place to place in the
air vortex, which rotates more or less as a unit. Thus air
at the center of the tube has a very low velocity and kinetic
energy, and these increase as we move outward from the
center toward the wall. Very near the wall this analysis
fails, but this does not destroy the general line of reasoning.
The air near the center of the tube passes through the orifice
and leaves the tube as the cold air stream. The air in the
outer parts of the tube is also at a low temperature, but
this air has a high kinetic energy. As it swirls down the tube
away from the orifice, it loses its kinetic energy as a result
of turbulence, internal friction, and mixing, and this kinetic
energy reverts to internal energy. Thus the gas temperature
rises, and the gas comes out of the tube hotter than the
initial temperature because nearly all of the kinetic energy
generated by expansion reappears as internal energy in only
part of the initial gas stream. The highly irreversible nature
of this process is clear, and this is the reason that data taken
on actual tubes always show large increases in entropy.

The sole attractive feature of this device from a practical
point of view is the absence of any moving parts. Thus the
devices are cheap to build and require no maintenance, and
they become practical devices only where these factors are
of overriding importance. Thus we find them in use to cool
drinking water on some railroad locomotives. Union work
rules require that cool water be available for the crew, and
unless it is, the locomotive is out of service. Downtime on
locomotives is so expensive that it is a big advantage to
have a foolproof water cooler. All that is needed is com-
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pressed air, and no train can operate anyway without that,
for if the air fails, the brakes lock.

After this digression we return to the Second Law of
Thermodynamics. In our expression of this law,

AS total ; 0

the word “total’” is meant to imply that we take into
account all changes in both the system and its surround-
ings, and we can equally well write

Assyatem + ASsurroundinga ; 0

My purpose in writing this alternative expression of the
Second Law is to make clear that the Second Law applies
to the system and its surroundings taken together and does
not impose any general restraint on the system alone. This
is also true of the First Law, which may be written

AEsystem + AEsurroundings = 0

where E represents energy in general.

There is a special kind of system, called an 7solated sys-
tem, which is completely cut off from its surroundings; that
is, it can exchange neither energy nor matter with its sur-
roundings. Thus changes which occur in such a system can-
not cause changes in the surroundings, and we need con-
sider just the system and no more. In this case our equations
become

- ‘n ASaystem ; 0 7

AEsystem =0

For such a system the total energy must remain constant,
and the total entropy can only increase or stay constant.
If the system is in equilibrium, its properties, including the
entropy, do not change. Thus the equality AS,ystem = 0 im-
plies that equilibrium has been reached, and the inequality
AS,ystem > 0 implies a change toward equilibrium. Since the
entropy of the system can only ¢ncrease, this must mean
that the equilibrium state is that state which produces the
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mazimum possible entropy. Thus at equilibrium the entropy
of an isolated system has its maximum value with respect
to all possible variations, and the condition for this maxi-
mum is that dS.ystem = 0. We will now apply this condition
to a simple situation.

Imagine a cylinder closed at both ends and containing a
piston which divides the volume of the cylinder into two
parts as shown in Fig. 6-4. We imagine the cylinder to be a

LY, || PuTa
£)

y s o a0 4 Trr

Figure 6-4

perfect insulator and the piston to be a heat conductor.
We also imagine the piston to move in the cylinder without
friction. The question is how Py and P, are related and how
T, and T. are related when the system is at equilibrium.
The answer is, of course, obvious; P, = Py, and Ty = Ta.
But our problem is to see whether our criterion of equilib-
rium dS.ystem = 0 Will in fact predict these results.
To do this, we need the fundamental property relation

dU =TdS — PdV

We may apply this equation separately to the two parts of
our system on the left and right of the piston. We take U,
S, and V to mean the total properties of all the gas in
whichever part of the system we are considering. Thus the
property relation may be solved for dS and written for each
part of the system as follows:

L. _ aU,
| das, ——W

_dU, | P,
dSy = =2+ dV,

Py
+ 'TTI dVl
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Adding, we obtain o
dS1 4+ dS; = d(S1 4+ 8:) = dSuystem
-+ Davi s pav,
Since the system is isolated, its energy is constant, and
dU; + dU; = or dU, = —dU,
Furthermore, the total volume of the system is constant,
and we have, in like fashion, dV, = —dV,. We also impose

our equilibrium condition that dS,ystem = 0, and obtain

(1 1 P, P, _
dSnystem = (’71‘1' - T;‘) dU! + (Tl - E‘) dVl 0

The question now is how this equation can be identically
zero for all imaginable variations dU; and dVy. These vari-
ations are independent and arbitrary, for we can easily
imagine small heat flows through the piston which cause
the change dU,, while at the same time the piston moves
slightly to cause a noncompensating change dV;. We con-
clude that each term of the equation must separately be
zero, and this can be generally true only if

1 1 P, P, _
—771-——1-,—2—0 and 'ITI E—O

From these we see immediately that for equilibrium we
must have T, = T, and P, = P,, results which we know
intuitively to be correct.

The point of this trivial example is to show that our cri-
terion of equilibrium involving the entropy can be used to
produce meaningful results. It can also be applied to non-
trivial problems. For example, what if the cylinder had con-
tained no piston but had in it a reactive mixture of gases?
What intuitive notion will tell you the equilibrium compo-
sition? The long and short of it is that one important use of
thermodynamices is in the prediction of equilibrium states.
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The equation ASita > 0 has been presented as the most

general statement of the Second Law. Let us now see how
it stands in relationship to the other statements so often
given of this law:

1. “No engine, operating in a cycle, can convert all of the
heat it takes in into work.” Such an engine would pro-
duce but one entropy change, that caused by removing
heat from a heat reservoir. This is an entropy decrease.
Thus we would have ASiua < 0, whereas the Second
Law requires ASiota1 > 0.

2. “Heat cannot be caused to flow from a cooler to a hotter
body without producing some other effect.” If the ex-
cluded process were possible, we would have heat ex-
tracted from a body at T¢, causing an entropy change
—Q/Tc, and added to a body at Tx, causing an entropy
change Q/Tx. Then we would have

Q. Q _ (1 _1\_Q(Tc—Tx)
ASwws = - T, = ¢ (T,, To) = Talc

Since Te < Ta, this gives ASim < 0, which is contrary
to our statement of the Second Law.

Thus we see that these negative statements appear as
consequences of our positive statement with respect to en-
tropy changes and are hardly reasonable alternatives to it.

I would make one further point. In standard classical
treatments of the Second Law, the Carnot engine cycle
appears to be of overwhelming importance, and students
get the idea that the Carnot engine is the beginning and
the end of the Second Law. Actually, in making the gen-
eralization necessary to reach the Second Law, we could
start with most any process. The heat engine was employed
by the founding fathers because of its great interest and
value. Such engines are still of tremendous technical im-
portance, and I have paid considerable attention to them

BIBLIOTECA
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for that reason. However, in the application of thermo-
dynamics to engineering devices, the heat engine is just one
more device, and the equations for it represent just another
example of the utility of the laws of thermodynamics. Thus
for a heat engine operating reversibly between two heat
reservoirs at Ty and T'¢, we have from the First Law that

Qu+Qc—-W=0 or W =Qu+ Q¢

77777777
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Figure 6-5

and from the Second Law that

AStotal = QH QE =0

Ty ' To
Thus
T
Qc = —Qy -T;Ig
and

W=QH+QC=QH-QHT£;=QH( “%)
Finally,. _

Thus there is no special need for you to remember the
Carnot engine formula. The two basic laws cover this proc-
ess and all others besides.
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Thermodynamics
and Statistical
Mechanics

It has not been necessary in our discussions of thermo-
dynamics to mention the nature of matter, nor is it neces-
sary now. Asfar as classical thermodynamics is concerned,
matter may as well not be made up of atoms. But our belief
in atoms and molecules is pretty firm, and we gain nothing
by ignoring the atomistic nature of matter. It makes much
more sense to ask what can be added to thermodynamiecs
by knowing something of the structure of matter. This type
of inquiry has led to the development of kinetic theory and
statistical mechanics. It is sometimes said that the develop-
ment of thermodynamics preceded the development of those
subjects which rely on the atomic nature of matter. But this
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is hardly true, for to a considerable degree they developed
simultaneously, often in the minds of the same individuals.
The first book on applied thermodynamics was published
by Rankine in 1859, the same year that Maxwell published
his first paper on the dynamical theory of gases. Thermo-
dynamics, kinetic theory, and statistical mechanics after
1850 grew up together and eventually led to the quantum
theory. It is often forgotten that Max Planck took thermo-
dynamics and statistical mechanics as his special fields of
interest, and it was difficulties that arose in these fields that
led him to the postulate that energy is quantized.

Thus questions about the interrelation between thermo-
dynamics and molecular behavior arose very early, and per-
haps the most famous problem of this nature was posed by
Maxwell in 1871 under the heading ‘“‘Limitations of the
Second Law.” He invented (in his mind) a being that could
deal directly with molecules; this being has since been
known as Maxwell’s demon. Maxwell suggested that a con-
tainer filled with gas be divided by a partition in which
there was a trap door manned by his demon. The demon
would observe molecules approaching the trap door from
both sides and would operate the door so as to allow only
fast molecules to pass in one direction and only slow mole-
cules to pass in the other direction. Thus the demon would
act to sort molecules according to speed. As a result the
gas on one side of the partition would become increasingly
warmer ‘and that on the other side cooler. At some point
we could start a heat engine to operate between the two
temperatures, and it could deliver work continuously to the
surroundings as long as the demon continued his activities.
It would only be necessary to add heat to the system to
compensate for the work done, and we would have an engine
operating in a cycle that converted all the heat taken in into
work, in violation of the Second Law. Maxwell imagined
that his demon itself did no work; it was a reversible demon
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that released energy to open a frictionless trap door and
recovered the same energy when the door closed.

There have been many suggestions as to how to build a
device to violate the Second Law, but not one has ever been
demonstrated to do so. However, Maxwell added a new di-
mension to this endeavor. He postulated a being, intelligent
in some sense, that could deal with individual molecules.
The easiest way out is to declare that the Second Law de-
nies that such a being could exist. But life has always been
mysterious, and we inevitably suppose that it must have
qualities not fully taken into account by the known laws of
physics. After all, bacteria are very small beings whose
accomplishments are by no means inconsequential. So Max-
well’s demon has not been lightly dismissed, and even after
almost 100 years it is still a fascinating topic of discussion.
I might remark that a demon that sorts molecules accord-
ing to speed is not the only demon one can imagine. Sorting
on molecular species is another example, but the problem
with respect to the Second Law is no different.

Maxwell’s demon appears to violate the Second Law
through its ability to deal with individual molecules. Is this
the key to ‘““success,” or are there other ways to take ad-
vantage of the molecular nature of matter in efforts to vio-
late the Second Law? Let me pose another problem. Sup-
pose again we have a container divided by a partition. This
time there is gas on one side of the partition, but a total
vacuunm on the other. The partition is removed and the
gas expands to fill the total volume. Now the question is
whether the gas will ever of its own accord return to its
initial location in one part of tne container. The overwhelm-
ing consensus of informed opinion is that it will, provided
one waits long enough! It comes down to a matter of chance.
Since the gas molecules are in continual motion, one con-
cludes that there is a finite (but minuscule) probability, a
chance, at any instant that the original configuration will
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be reproduced. One need not even insist on a special initial
configuration. It is sufficient to consider the container
merely filled with gas and then to ask whether the gas
will ever momentarily collect itself in any portion of the
container. For if it does, then we can insert a partition and
trap the gas in a state of lower entropy than it had initially.
Again the overwhelming consensus of informed opinion is
that this is possible if one is prepared to wait long enough,
say, 101°° years. Whether or not you believe this will ever
happen is not important. We can imagine it to happen re-
gardless of whether it actually will, and whether real or
imaginary, it represents a process seemingly at odds with
the Second Law, and one that does not require dealing with
individual molecules. It is important to note, however, that
to accomplish the process one must insert a partition into
the container at exactly the right instant. Thus the process
does require continuous observation of the system by some
being or device capable of detecting molecules and taking
appropriate action. So we see that the two hypothetical
processes just described do have common elements and need
not be considered independently.

In particular, they have in common the idea of molecular
ordering. In the case of Maxwell’s demon ordering is done
on the basis of speed; that is, high-speed molecules are
segregated from low-speed molecules. In the second case,
ordering is done in the sense that molecules are collected
from a larger region of space into a more restricted region.
This process, by the way, could also be accomplished by a
Maxwell demon, one which allowed molecules to pass only
one way through its trap door. Another type of ordering
process that a Maxwell demon could accomplish results
when a gas mizture is admitted to the container. The demon
could operate his trap door so as to allow green molecules
to go only one way and red molecules only the other. This
would serve to segregate the green from the red molecules.
So you see that our use of the word “ordering” gives it
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perhaps a broader meaning than is found in its everyday
use. Our demon is said to bring about ordering whenever he
restricts molecules to a given region of space by virtue of
some characteristic of the molecule. We have considered
molecular speed, molecular species, and even the very char-
acteristic of being a molecule at all. Molecules left to them-
selves do not become so ordered except, as we have seen,
by chance. Ordering at will requires the intervention of
some outside agent, of which Maxwell’s demon is a very
special example.

All of these ordering processes produce a reduction in the
entropy of the system, and each reduction can easily be
calculated by the methods of thermodynamics. We are
therefore led to the notion that increasing order corresponds
to decreasing entropy, and vice versa; this is the basic idea
that underlies statistical mechanics. All that we need in
addition is a method of expressing order or disorder in a
quantitative way, but this we will leave for later.

There is another aspect of the sorting processes involving
Maxwell demons that we have not yet considered. It cen-
ters around the fact that the demon must act on the basis
of information; that is, he cannot act properly until he
knows that a molecule in a particular place is a fast one,
a slow one, a red one, a green one, directed left, or directed
right, etc. Even a demon that sits around waiting for
chance to order a system must keep continuously informed
of the locations of molecules; otherwise he would never
know the moment to insert a partition so as to preserve
the long-awaited but otherwise-momentary order. There are
two separate ideas which come out of these observations.
The first is that there may be some connection between en-
tropy and information. The second is that the information-
gathering activities of the demon may be the key to whether
or not he can operate s0 as to cause violations of the Second
Law. The apparent link between information and entropy
has been exploited and developed into the subject called
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information theory, which has important applications in the
design of communication systems. The fundamental equa-
tion of information theory is identical with the equation for
entropy in statistical mechanies, and the quantity calcu-
lated, having to do with the information content of mes-
sages, is even called entropy. In statistical mechanics we
deduce the properties of matter by applying statistics to
large numbers of molecules. In information theory we de-
duce the information-carrying capacity of communications
systems by applying statistics to large numbers of messages.

In our descriptions of the activities and ambitions of
Maxwell demons we have implied several questions. Let me
state these questions one by one, and provide what are
thought to be correct answers:

1. Is it necessary to regard the demon as a living being?
The answer is that it is not necessary. Moreover, it’s not
even advantageous. The demon is merely an intermedi-
ary, a relay mechanism, that responds in a specific way
to an information signal. It may therefore be automated
or programmed to perform its tasks at least as surely
as if it possessed the intelligence of a human being. This
is not to deny that an intelligent living being could serve
as a sorting demon, but such a demon would be at a dis-
advantage. In spite of the mysteries of life, every study
of life processes has demonstrated that the laws of
physics do in fact apply. There may be additional laws,
but none of those known is violated, not even the Sec-
ond Law of Thermodynamics. The fantastic ordering of
atoms and molecules necessary to produce and maintain
a living system is accompanied by a more than compen-
sating disorder created in the surroundings. Thus the
ever-increasing order represented by increasing numbers
of the human species is more than matched by the trail
of disorder left in our surroundings, of which the increas-
ing pollution of our atmosphere, rivers, and oceans is

’
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but an example. It is not our problem to explain how of
why the ordering necessary to living systems occurs. The
fact is that it does, and it does so without violating the
laws of physics. So the attribution of life to Maxwell’s
demon can only prejudice the case against its ambitions
to violate the Second Law. We can therefore narrow our
attention to automated devices.

Can an automated device be activated by mechanical
interaction with the molecules themselves? The answer
to this is no, for the following reason. Any device or por-
tion of a device used to trigger the necessary action to
accomplish the sorting of molecules can be no more mas-
sive than the molecules themselves; otherwise it would
grossly interfere with the motions of the molecules and
actually prevent the sorting from being accomplished.
On the other hand, any object no more massive than the
molecules will be subject to the same thermal motions
as the molecules, and as a result cannot be held in its
proper location. We are therefore reduced to more mas-
sive devices which rely on information about the mole-
cules to be sorted, and this can be transmitted only by
electromagnetic radiation, of which ordinary light is one
example.

Can an automated device relying on information sort
molecules in violation of the Second Law? Again, the
answer is that it cannot. We may presume our device to
be sufficiently massive and to be mechanically reversi-
ble, and we concentrate on the problem of how it is to
sense the molecules with which it is designed to deal.
The device is enclosed within a container, and the only
way it can sense its subject molecules without grossly
disturbing their motions is by some form of electro-
magnetic radiation. Thus the device must radiate en-
ergy and sense molecules through their reflection of radi-
ation. This energy is absorbed throughout the system
and can be shown to cause a greater entropy increase
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than any decrease caused by the proper working of ‘the
device.

Thus we conclude that Maxwell’s demon cannot operate
in such a way as to violate the Second Law of Thermo-
dynamics. The fact that this problem has been kicked
around for almost 100 years and is still of interest illus-
trates the reluctance with which even scientists accept the
Second Law as being inviolate. There is good reason for
wanting to violate it, for if it could be done, all of man’s
energy requirements could forever be met without any de-
pletion of resources or pollution of his surroundings. Man
lives on hope, and does not readily take to restrictions on
what he can do. So far, however, he has had to live within
the limits defined by the laws of thermodynamics, and all
indications are that he will continue to.

My purpose in this discussion has been to illustrate the
problems encountered when we merely contemplate dealing
with individual molecules. Nevertheless, we would like to
be able to use our knowledge of the molecular or micro-
scopic nature of matter to help us understand the macro-
scopic behavior of matter. The enormous numbers of mole-
cules that make up macroscopic systems and the chaotic
motions of these molecules suggest that some sort of sta-
tistical treatment might prove useful. This idea led to the
development of statistical mechanics, a subject so inti-
mately linked with thermodynamics that it seems essential
to devote some time to it.

The obvious way to go about developing this subject is
to apply statistics to the properties of molecules themselves.
However, no such treatment can possibly be general. The
reason for this is that molecules interact, and as a result
statistical averaging of their private propertigs does not pro-
vide any meaningful quantity descriptive of a macroscopic
system. For example, molecules do possess their own private
kinetic energies, but not their own private potential ener-
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gies, because potential energy arises through forces acting
between molecules and is shared among them. Thus sta-
tistical averaging of the private (kinetic) energies of mole-
cules does not in general allow calculation of the internal
energy of the system. Only for ideal gases can one say that
molecules are independent of one another. I want to avoid
at all costs any treatment that is limited to ideal gases.
Actually, the cost is negligible, for it is hardly more difficult
in statistical mechanics to be general than to be narrow.

If we are not to deal with individual molecules, what is
the alternative? It is to deal with a very large collection of
macroscopically identical systems known as an ensemble.
The word ensemble is most commonly applied to a col-
lection of musicians, but the word has meaning only if all
the musicians are playing the same tune. The thing that
makes a collection of systems an ensemble is that all mem-
bers would appear to an outside observer to be identical.
If we have a closed (i.e., constant-mass) system containing
N identical atoms or molecules and having a fixed volume
V and existing in thermal equilibrium with a heat reservoir
at temperature T, then we regard the thermodynamic state
of the system to be fixed, regardless of what the atoms or
molecules inside may be doing. The system, far from being
restricted to ideal gases, may be solid, liquid, or gas.

We imagine this system to be reproduced or replicated
a tremendous number of times, and we imagine this col-
lection of macroscopically identical systems to be arranged
on a lattice so that the members are in close contact with
one another. Then we imagine the entire collection to be
1solated from its surroundings; that is, we imagine the
boundaries of the collection to be impervious to both the
_ passage of matter and of energy. This is our ensemble. But
* what is its purpose? It is merely an aid to our mental proc-
esses, for we now ask how the various members of the
ensemble differ from one another at the microscopic or
molecular level.
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We know that molecules move about in a chaotic fashion
and that at any instant the particular molecular configu-
ration to be found in any ensemble member is just a matter
of chance. If we consider all the members at any one in-
stant, we therefore expect to find a tremendous variety of
microscopic configurations. These configurations, seen at
any one instant in the ensemble, are presumed to be the
same as those we would see in the original real system were
we to observe it for a very long time. Furthermore, we
assume that the observed macroscopic properties, such as
pressure and internal energy, are averages resulting from
the various configurations considered, either over a long
period of time or over a very large ensemble.

The question yet to be answered is how the various micro-
scopic configurations are to be characterized. The answer is
provided by quantum mechanics, and we must here merely
accept it. Quantum theory postulates that energy on the
microscopic scale is made up of discrete units or quanta.
Since energy is quantized, the internal energy of a macro-
scopic system at any instant is the sum of an enormous
number of quanta of energy, and because of this, a macro-
scopic system at any instant is in a particular quantum state,
characterized by a particular value of its energy, E,. There
is a discrete set of possible energy values, and we will use
the notation {E,} to represent the entire set. Any one value
E, of the set {E,} represents the particular energy associ-
ated with quantum state g of the system. The set is dis-
crete because one can never get a complete spectrum of
values by summing quanta, just as one cannot obtain deci-
mal numbers by adding integers.

Quantum theory also provides the result that for a closed
system of N particles, the set of values {E,} is completely
determined by the volume of the system. Since we have speci-
fied the volume V of our system, we have fixed the set
{E¢}, and we can expect the energy of our system to pass
through all these possible values over a long period of time
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and, in fact, to pass through some of them many, many
times. Similarly, our ensemble at a given instant is made
up of members each in its own quantum state with an
energy E, taken from the set {E,}. There may be many
members with the same value of E, The total internal
energy of the entire ensemble is just the sum of the energies
E,, each multiplied by the number of members n, in the
particular quantum state ¢; thus

Q@ = E n,E, = constant (7-1)
- v

where the summation is over all possible quantum states.
The constancy of U results from the First Law of Thermo-
dynamics as applied to the ensemble, which you will recall
is an isolated system. Furthermore, if there are a total of
n members in the ensemble, then

n = Y m, = constant (7-2)
q

The constancy of n again results because the ensemble is
considered isolated. These two equations express the
restraints on the ensemble, and we will need to take them
into account later.

We now want to consider the makeup of our ensemble, or
more precisely the number of different ways it can be made
up..It is here that statistics enters, and the procedure seems
strange indeed. It is probably best explained by taking a
specific example that simulates the real situation, but on
a very small scale. Assume we have an ensemble that
contains 24 members; that is, n = 24, as shown in Fig. 7-1.
Consider for a moment the shaded member of this ensemble.
We will identify it with the letter a. It is a replica of our
original system, which you will recall Was specified to have
the volume V and to be in equilibrium with a heat reservoir
at temperature 7. Member a also has volume V and is in
equilibrium with the rest of the ensemble, which then
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constitutes a heat reservoir at T for member a. Now .each
of the 24 ensemble members can be identified by its own
letter. It is not the positions on the lattice that are being
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identified by letters, but the ensemble members them-
selves. Thus Fig. 7-1 shows member a in just one of its
24 possible locations, and once it is put in a particular
location there are n — 1 = 23 positions left for placing
member b. Moreover, for each of the 24 locations for a
there are 23 locations for b. Thus there are 24 X 23 dif-
ferent ways to locate both ¢ and b. Once a and b are placed,
there are 22 ways to locate ¢ for each of the 24 X 23
locations of @ and b. Thus there are 24 X 23 X 22 ways to
locate a, b, and ¢. And so it goes; by the time we have
located all n = 24 members, we have chosen one arrange-
ment of the ensemble out of n! = 24! = 6.2 X 10 pos-
sible arrangements. Clearly, one does not require a large
ensemble in order to generate large numbers.

Each member of the ensemble must at any instant be
in a particular quantum state clmaracterized by a particular
value of E, taken from the set of possible values {E,}. In
our example we will assume that there are only four pos-
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sible quantum states, identified by setting ¢ equal to 1; 2,
3, or 4. Thus {E,} is made up of the energy values E,, E,,
E;, and E;:. Each of our 24 ensemble members must be in
one of these four quantum states; so let us assign a quantum
state to each ensemble member as indicated in Table 7-1.

Table 7-1
Quantum  Energy, Ensemble members Number of
stale, ¢ E, in state ¢ members, ny
1 E, abfiil,mrvy n =9
2 E. d,e ko0, p wz ny =7
3 E, G938 tu ny =6
4 B, h, z ng =2
n =24

With this assignment of ensemble members to quantum
states, each arrangement of members on the lattice of
Fig. 7-1 represents a particular distribution of energy
states, which corresponds to a particular sequence in time
for the original system to pass through the same states.
The complicating factor is that there is more than one
ensemble member in each quantum state. If we were to
interchange members of the same quantum state, the
lattice would look no different. For example, members h
and zare'both in quantum state 4 and are therefore identi-
cal. Interchanging them makes no difference, but our
n! = 24! ways of arranging the lattice counted them as
different. Thus for any arrangement of the lattice we have
a second arrangement that is no different, for we may
interchange h and z whatever their locations. Thus to get
the number of really different lattice arrangements, we
would divide n! by 2 = 2! = n,! because of the fact that
A}
h and z are identical. Similarly, the six members ¢, g, j, s, {,
and u are all in quantum state 3 and are therefore indis-
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tinguishable from one another. There are 6! = ng! ways to
arrange these six members on their respective lattice sites
without making the lattice any different. This is because
¢ could be put on any of six sites, then g on any of the five
remaining sites, 7 on four, etc. Thus our n! ways to arrange
the lattice is too large by a factor of 6! = n;! and must
be divided by this factor to remove the indistinguishable
arrangements resulting from the fact that six members are
all in quantum state 3. By now it should be clear that we
must divide n! by n,! for each of the ¢ quantum states.
Thus the number of ensemble or lattice arrangements that
are really different is given by

n! 24!

= = ~~ 11
@ = i — gTleigl ~ 2356 X 10

which is still a big number, though not so large as 24!
It is worth noting at this point that the natural logarithm
of w is not nearly so imposing a number. In fact, In wis a
mere 26.19.

As a result of this example we can now write down a
general formula for the number of really different ways an
ensemble of » members can be arranged for ¢ quantum
states when n, is the number of members in a particular
quantum state; thus

n!

I] na!
q

< s w =

. (7-3)

where the sign n signifies the running product of all the

factorials n,!.

Clearly, in order to evaluate w we must know not only
n but also the values of all the n,; that is, we must know
the distribution of the ensemble members among the pos-
gible quantum states. In our example, used for the purpose
of illustration, we assigned values to the n,’s arbitrarily,
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and had we assigned different values, we would have
calculated a different value for w. For example, we might
have set n, = ny = n; = 0 and n, = 24. Then » would
have been 1, and In w would have been zero. Or we might
have set ny = ny = n3 = ny = 6, and » would have come
out to about 2.3 X 10! and In w to about28.5. Evidently,
the problem is to find a preferred distribution. The clue to
a solution to this problem is found in the Second Law of
Thermodynamics.

The ensemble of members that we have devised is iso-
lated from its surroundings. Thus at equilibrium its total
entropy must be a maximum with respect to all possible
internal variations within the ensemble. Thus we conclude
that the preferred distribution of ensemble members among
the possible quantum states is that distribution which
maximizes the entropy of the entire ensemble. The problem
now is to find a connection between entropy and some
variable which pertains to the ensemble, and here the best
we can do is make an educated guess. We have already
suggested that there is some connection between entropy
and disorder. Moreover, the quantity w that we have so
painfully developed a formula for in Eq. (7-3) is a measure
of the disorder in our original system, for each really dif-
ferent arrangement of our ensemble corresponds to a dif-
ferent sequence of states over a period of time in the original
system. The more such possibilities there are, the more
chaotic or unpredictable or disordered the original system
appears. The limiting case where all ensemble members
are in the same quantum state led to a value of w = 1 or
In w = 0. This corresponds to perfect order, for it means
that the original system is always in the same quantum
state; it never changes its state, and in this sense is in no
way chaotic but is completely predictable or ordered. So
it makes sense to guess that the total entropy of the ensemble
is some function of w, and all that remains is to find that
functional relationship which leads to results that agree
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with experiment. The relationship which leads to success
identifies the ensemble entropy with In w according to the
equation :
S=kho (7-4)

where § is the entropy of the entire ensemble and & is a
constant, known as Boltzmann’s constant.

Equation (7-4) is the fundamental postulate of statistical
mechanics. There is no way to prove it. We can only guess
that it is right and then test the consequences against
experiment. The remaining steps are mathematical. First,
we use Eq. (7-3) to get an expression for In w, and then we
simplify this expression as much as possible and substitute
the result into Eq. (7-4) to get an expression for the entropy.
Finally, we maximize the entropy to obtain the preferred
distribution of quantum states. It is done as follows.

Taking the natural logarithm of both sides of Eq. (7-3),
we get

In w =lnn!—Elnnq!
q

Since 7 is taken to be arbitrarily large for any ensemble of
interest, the n, are also presumed to be large numbers,
and in this case we may use Stirling’s formula for the
logarithms of factorials; thus

nX!=XhX-X

I :

Our equation for In w now becomes

Inw=nlnn-—n —E(n,lnnq) +Zn,
q q
Butn = En,; therefore
q
Inwe=nlnn —-E(nqlnnq)
q

By a little manipulation we can put this equation into an
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even simpler form. First, we factor n; thus _—

1
. lnw=n[lnn—-7—zz(nqlnnq)]

q

Multiplying the first term in brackets by E ng/n =1, we
q

obtain

n

S
1
lnw=n[" lnn-—ﬁZ(nqlnnq)]
q

Now n and In n are the same for all terms in the summations,
and we may therefore write

1nw=n[2(%glnn)—§(%lnnq)]

q

Inw = —nz [%(lnnq—lnn)]

)

- Py e
SYEIS)

q

or

or

In w

We now define the probabilify of quantum state ¢ by

P, = 7&2
So that-we-have finally ’
Inw= —n E (P,In P,) (7-5)
q

Substitution of Eq. (7-5) into Eq. (7-4) gives the following
expression for the entropy of the ensemble:

- 8§ = —kn Z (P;InPy) (7-6)

We have come now to the problem of finding the set of
probabilities {P,} which maximizes §. Unfortunately, this is
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not the simple maximum problem that it may seem. The
reason is that there are two restraints on the system im-
posed by Eqs. (7-1) and (7-2). However, the problem of
finding a maximum subject to restraints has a standard
solution through Lagrange’s method of undetermined multi-
pliers. Equation (7-1) may be written

: z(an,) = nZ(%‘E,,) =nZ(P¢Eq) =

or
nE(P,,E’,,) —Uu=0
q

We now multiply this equation by an undetermined con-
stant, say A; thus
A [nz (P.Ey) — ‘u] =0
q
Since the left side of this equation is zero, it may be added

to the right side of Eq. (7-6) without changing anything
to get

§ = —kn E (PsIn Py) + 2 [n Z (P,E,) — *u]

This equation now incorporates one of the restraints on the
system. To maximize § subject to this restraint, we differ-
entiate and set d§ = 0 (note that k, n, A, U, and the E,’s
are all constant) as follows:

d§ = —kn[Y (P, dIn Py) + Y (n P,dP,)]
. q q
+ M) (E,dP) =0
q
Thus since d In P, = dP,/P,, we have

[YdP.+ Y n P, qu)] - %z (E,dP,) = 0
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For simplicity, set \/k = —p8 and collect like terms; thus .
3 (1 +1In P+ BE) dP, = 0 @7
q

Now we impose the second restraint on our system. Dividing
Eq. (7-2) by n, we get

= & =
1= Z n ZP’
q q
Differentiating, we have
E dP, =0 (7-8)
q

In order to satisfy both Egs. (7-7) and (7-8), we must have

1 + In P, + BE, = constant
or

In P, + BE, = constant — 1 = A

or
InP, = A — BE,

In exponential form this equation becomes
P, = ede P,

If we now sum the P/’s over all ¢, we get
TP =AY etn =1
q

q

Thus = =~ '

eA == _.1—.
g
q
and
e—PEq e—BEq
Pom s =7 (7-9)
[}

where Z = E eFZ is called the partition function.
q
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The distribution of probabilities for the possible quantum
' states of our ensemble, as given by Eq. (7-9), is known as
the Boltzmann distribution. It is by no means the only dis-
tribution of probabilities that will lead to the required en-

semble energy Z (n,E,); it is the particular distribution
q

that maximizes the ensemble entropy and which therefore
conforms to the laws of thermodynamics. It is clear from
Eq. (7-9) that the only variable on which P, depends is E,,
because 8 is constant by definition and Z is a summation
that is the same for all the P,’s. Thus the probability of a
quantum state for a system of fixed volume in equilibrium
with a heat reservoir depends only on the energy E, of the
quantum state, and all quantum states with the same en-
ergy have the same probability. We could have used this
as an alternative basic postulate of statistical mechanics,
and we would have reached the same distribution of proba-
bilities. This course is in fact followed in some textbooks.!

Having found the distribution of probabilities, the only
remaining question is what to do with it. Since its main use
is in the calculation of thermodynamic properties, we should
look for equations which give these properties in terms of
the variables of statistical mechanics. We start with the
two basic expressions, Eq. (7-1) for internal energy and
Eq. (7-6) for entropy. If we divide Eq. (7-1) by n, we get
the average internal energy of an ensemble member or the
time-averaged or macroscopic internal energy of the original
system U; thus

or
U=Y (PE) (7-10)
q
1 8ee, for example, M. W. Zemansky and H. C. Van Ness, “Basic

Engineering Thermodynamics,” Chap. 15, McGraw-Hill Book Co.,
New York, 1966.
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Similarly, if we divide Eq. (7-6) by n, we get the average.
entropy of an ensemble member or the entropy of the origi-
nal system S; thus

8= —kY (Pln P,) C(r-11)
q
By Eq. (7-9) we eliminate the P,’s from Eq. (7-10); this

gives
: _ \ ¢ P*EE,
U=
q
We also have

dlnZ\ _ 1(3zZ\ _ 1 (3Ze*5 _ze“”c(—E,)
B Jv Z\B)v Z\ o8 v“q Z

Comparison of the last two equations shows that

(%‘ﬂ—z-)v --Uu @12

Since Z = E e¢9F,, we see that Z is in general a function

RS T I

of 8 and the E./s. But the E,’s are functions of volume.
Thus Z = Z(8,V). Therefore

dan:(aan>VdB+(aan> v

B
or = * . 2
0ln Z

dnZ = —-Udﬂ—{-( F\a )ﬂdV
. But -

d(Ug) = UdB + B8dU
or

—Udg =8dU — d(UB)
Thus

dlnZ = /SdU—d(Uﬁ)+(aan) av
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and .

8dU = d(n Z + UB) — (";LVZ> av
B8

We also have the thermodynamic equation

dU =TdS — P4V
Thus

BT dS = 8dU + BP dV
and

BT dS = d(n Z + UB) + [BP _ (" ;’I’,Z)ﬁ] av
or finally '
dlnZ
48 = gpdnZ + UB) + 57 [BP (—W—)ﬂ] v (7-13)

The next step is to develop another general equation for
dS. We start by substituting e=#%./Z for P, in the logarithm
of Eq. (7-11) as follows:

S = —kZP Ine_ﬂ'

- kZ(Pq In Z) + kz(PqﬁEq)
—kanZP +kBZ(PE'a)

However, ZP =1, and by Eq. (7-10), X (P.Ey) = U.

q
Thus
S=kInZ + k8U = k(In Z + 8U) (7-14)
and
dS = kd(ln Z 4+ 8U) (7-15)

Comparison of Eqs. (7-13) and (7-15) shows that

1 1
k= E'T or B = ﬁ (7-16)
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and that .

alnZ 1fomz\
ﬁP—( FY7 )ﬁ =0 or P—E(‘W)ﬁ (7-17)

From Eq. (7-12)

@InZ/3T)y _ _ (3InZ/3T)y

U=- ag/aT —1/kT?

Thus

U= kT (‘%‘%)V (7-18)

and by combining Eq. (7-16) with Egs. (7-14) and (7-17),
we get

S=khz+3 (7-19)
olnZ ,
P =kT <T)T (7-20)

Eqs. (7-18) to (7-20) show that the internal energy, the
entropy, and the pressure may be calculated once the
partition function for a system is known as a function of
T and V. Knowing U, S, P, T, and V, we may readily
calculate any other thermodynamic property from its defi-
nition. Thus statistical mechanics provides a formalism for
the calculation of thermodynamic properties from the parti-
tion function. Unfortunately, it does not provide the means
for the determination of partition functions. This is a
problem in quantum mechanics, one that has been solved
only for special cases. The relative simplicity of ideal gases
allows them to be treated rather completely, and statistical
mechanics is widely used for the calculation of the thermo-
dynamic properties of ideal gases from spectroscopic data.
Its value here is not that it makes unnecessary the taking
of data but that it allows use of a different sort of data
(data that are more readily taken) than would be required
by classical thermodynamics. For nonideal gases less prog-
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ress has been made, but statistical mechanics does show
that the correct form for an equation of state is the virial
form. However, for almost all cases the coefficients in this
equation must still be determined from measurements of
macroscopic properties.

For liquids, relatively little progress has been made,
because one encounters great difficulty in the evaluation
of the partition function. For this reason most work on
liquids has been directed toward development of approxi-
mate methods, none of which is yet regarded as generally
satisfactory. Crystalline solids, however, because of their
highly ordered state, have been dealt with more success-
fully. Statistical mechanics has also been applied to the
electron gas to provide useful results with respect to the
electrical properties of solids. Yet another application is to
the photon gas, and this yields important results with
respect to radiation. The properties of plasmas, because of
their high temperatures, could hardly be determined except
by statistical mechanics. All the results of the kinetic
theory of gases, such as the Maxwell-Boltzmann distri-
bution of molecular velocities, come out of statistical
mechanics; thus kinetic theory as a separate subject is no
longer of more than historical interest. I enumerate these
applications merely to suggest that you may find a separate
study of statistical mechanics to be useful. My purpose
here has merely been to show its connection with
therniodynamics.

Statistical mechanics adds to thermodynamics on its
theoretical side, as a means for or as an aid to the calcula-
tion of properties. The other half of thermodynamics, the
applied half, benefits only from a wider availability of the
data needed in the solution of engineering problems.
Although statistical mechanics is based on the presumed
reality of atoms and molecules, it does not provide, any
more than does thermodynamics, a detailed description of
atomic and molecular behavior and of atomic and molecular
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interactions. However, it does provide, as thermodynamies
does not, the means by which thermodynamic properties
may be calculated whenever detailed descriptions of atomic
and molecular behavior are provided from other studies,
either theoretical or experimental. Thus statistical mechanics
adds something very useful to thermodynamics, but it
neither explains thermodynamics nor replaces it.




