

ENR – Énergie et énergies renouvelables

10. Les énergies renouvelables

10.3 - REN21 Global Status Report

Mise à jour 2022

Adapté par:

Daniel R. Rousse, ing., Ph.D.

Département de génie mécanique

Patrick Turcotte, ing.

Documentation à lire

- Références gratuites et obligatoires, accessibles sur Moodle:
 - Cette présentation
 - REN 21 Key Messages for Decision Makers
- Références facultatives :
 - REN21 Global Status Report
 - REN21 *Data pack*, la compilation de toutes les données utilisées en format Excel

Plan de la présentation

- Introduction et objectifs de la capsule
- Technologies, production et consommation
- Politiques, cibles et réglementations
- Marchés et investissements
- Conclusion

Plan de la présentation

- Introduction et objectifs de la capsule
- Technologies, production et consommation
- Politiques, cibles et réglementations
- Marchés et investissements
- Conclusion

- Qui est REN21?
 - Renewable Energy Policy Network for the 21st Century
 - Groupe de réflexion créé en 2004 dont le but est de favoriser l'avancement et l'adoption des sources d'énergies renouvelables, au travers des normes et politiques
 - 65 membres entreprises, états, organisations internationales, ONG, milieu scientifique et académique
 - Entièrement financé par des dons (principalement l'Allemagne)

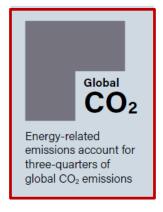
- Qu'est-ce que le GSR?
 - Le Global Status Report est mis à jour et publié annuellement
 - Il présente des données brutes (incluant en format Excel), des analyses et des recommandations

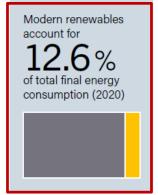
2021

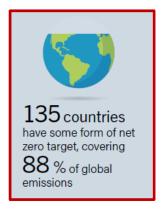
- Global Overview
- Policy Landscape
- Market and Industry Trends
- Distributed Renewables for Energy Access
- Investment Flows
- Energy Systems Integration and Enabling Technologies
- Energy Efficiency, Renewables and Decarbonisation
- Feature: Business Demand for Renewables

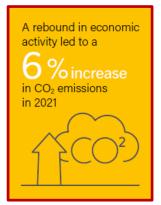
Global Overview	01
Policy Landscape	02
Market and Industry Trends	03
Distributed Renewables for Energy Access	04
Investment Flows	05
Renewable-based Energy Systems	06
Renewables in Cities	07

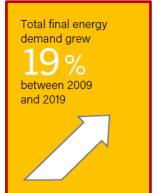
2022

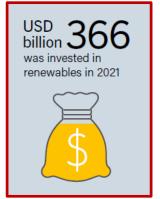

- L'organisme est partisan et biaisé, mais rigoureux et documenté
- Les sources de données sont diversifiées, par exemple:
 - IEA (International Energy Agency)
 - IRENA (International Renewable Energy Agency)
 - World Economic Forum
 - OECD (Organization for Economic Cooperation and Development)
 - BP et autres producteurs d'énergie
 - Études et analyses académiques, nationales, financières...

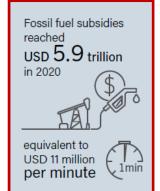

- Trois catégories de production d'énergie:
 - « Modern renewables »: solaire (photovoltaïque, concentré, thermique), éolien, hydroélectrique, géothermique, bio-énergie moderne, océanique
 - « Fossil fuels »: pétrole, gaz naturel, charbon
 - « Others »: nucléaire, bio-énergie classique
- Leur vision de l'hydro-électricité est variable parfois incluse dans les énergies renouvelables, parfois à part


- Trois catégories de consommation d'énergie:
 - « Thermal »: production de chaleur et de froid (industrielle, commerciale et résidentielle, incluant la cuisine, l'eau sanitaire et l'électricité produite pour la production de chaleur ou du froid)
 - « Transport »: déplacements terrestres, maritimes et aériens (marchandises et individus, incluant l'électricité produite pour le transport)
 - « Power »: production d'électricité (incluant la chaleur destinée à la production d'électricité)


- Objectifs de la capsule:
 - Se familiariser avec une source d'information sur les énergies renouvelables dans le monde
 - Se familiariser avec l'état des énergies renouvelables dans le monde
 - Sources et quantités
 - Portrait réglementaire et politique
 - Aspects économiques


Vision globale rapport de 2022





Plan de la présentation

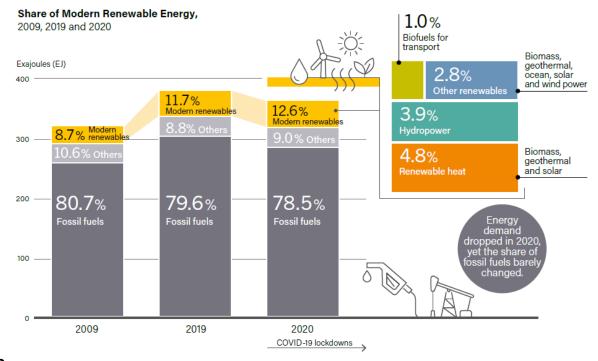
- Introduction et objectifs de la capsule
- Technologies, production et consommation
- Politiques, cibles et réglementations
- Marchés et investissements
- Conclusion

Rappel:

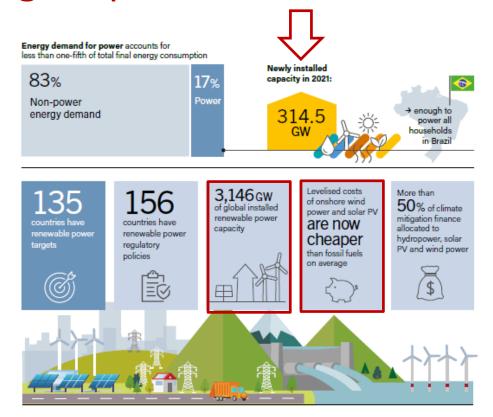
kilo - 10³

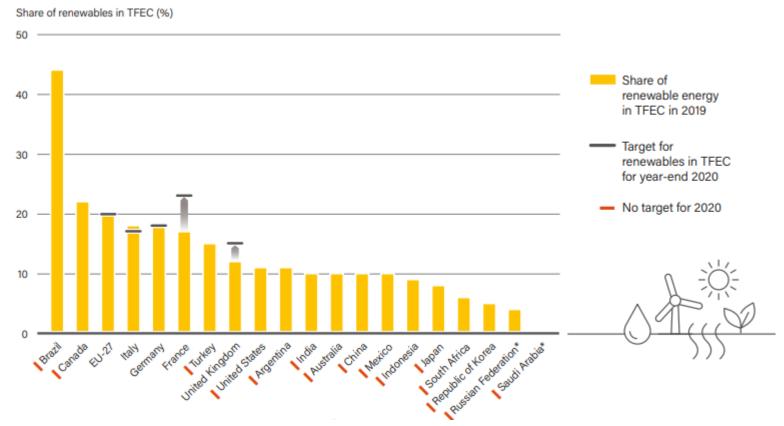
mega - 10⁶

giga - 10⁹

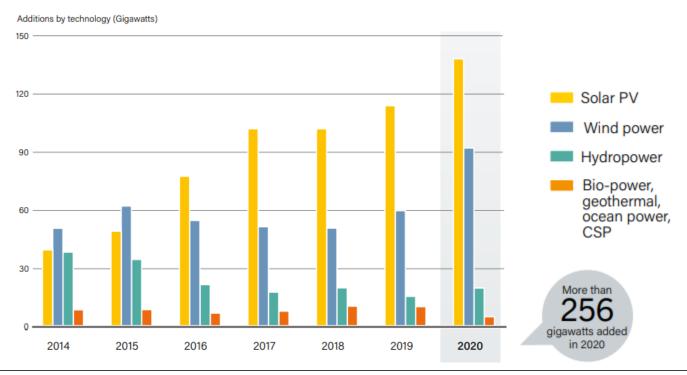

tera - 10¹²

peta - 10¹⁵

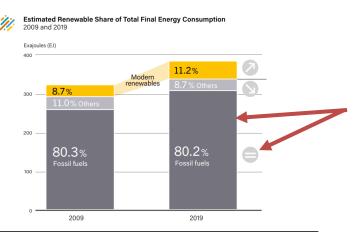

 $exa - 10^{18}$

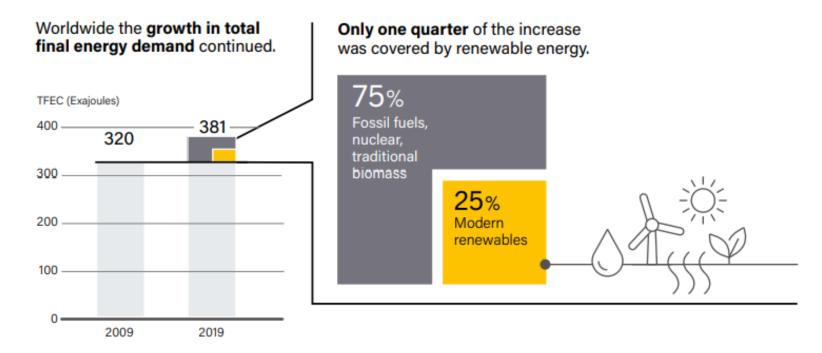

zeta - 10²¹

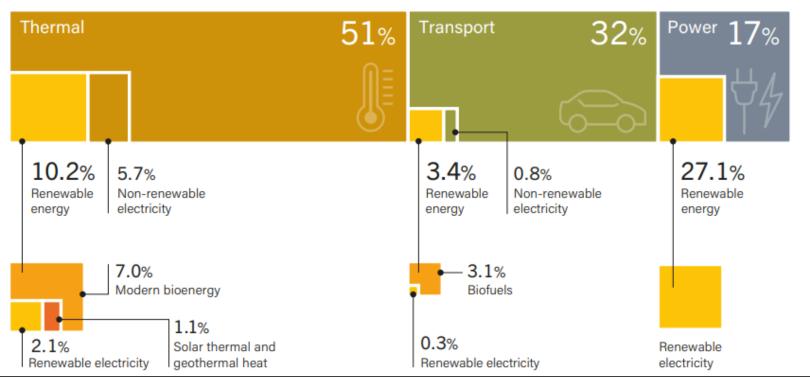
1 EJ = 2.8*10⁸ MW.h


Source: Based on IEA data

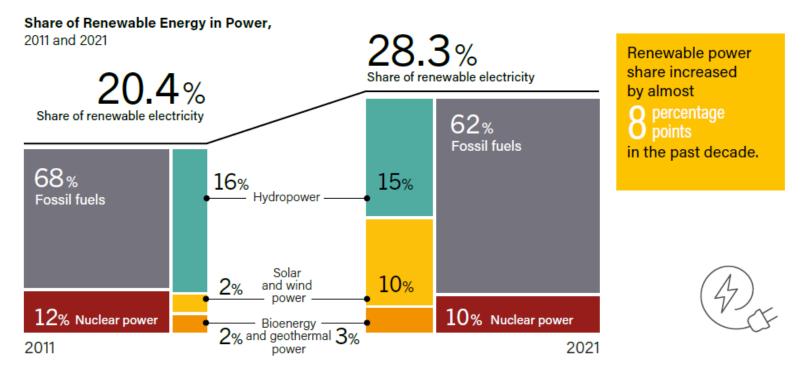
• La répartition des renouvelables: Biofuels for transport 1.0% 2.4% Wind/solar/biomass/ geothermal/ocean power 3.6% Hydropower 2019 4.2% Modern renewables Biomass/solar/ geothermal heat 11.2%


• Les ajouts de production d'énergies renouvelables:


- Les mauvaises nouvelles:
 - L'augmentation des énergies renouvelables dans le bouquet énergétique est encore très faible


- En absolu, la consommation d'énergie de sources nonrenouvelables a augmenté
- La fraction des énergies fossiles reste stable

• L'augmentation est très lourde:


Consommation en 2018:

- La production d'électricité est le porte-étendard des énergies renouvelables, où leur part commence vraiment à être significative
- Le chauffage devrait être optimisé, mais les infrastructures ne sont pas en place
- Le refroidissement est un grand défi, vu la hausse des températures moyennes
- Le transport est toujours le point faible des énergies renouvelables, à cause des défis techniques

• Le top 5 de la génération d'électricité en 2020:

	1	2	3	4	5
POWER					
Renewable power capacity (including hydropower)	China	United States	Brazil	India	Germany
Renewable power capacity (not including hydropower)	China	United States	Germany	India	Japan
Renewable power capacity <i>per</i> capita (not including hydropower) ¹	Iceland	Denmark	Sweden	Germany	Australia
Bio-power capacity	China	Brazil	United States	Germany	India
@ Geothermal power capacity	United States	Indonesia	Philippines	Turkey	New Zealand
O Hydropower capacity ²	China	Brazil	Canada	United States	Russian Federation
Solar PV capacity	China	United States	Japan	Germany	India
Concentrating solar thermal power (CSP) capacity	Spain	United States	China	Morocco	South Africa
Wind power capacity	China	United States	Germany	India	Spain

FF: réduction de 6% en 10 ans, faudra t'il un siècle pour s'en débarrasser?

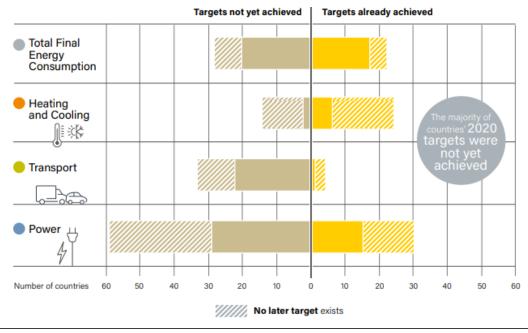
- Au Canada:
 - 22% du TFEC est de sources d'énergie renouvelable (2^{ème} après le Brésil)
 - 80% de la production d'énergie renouvelable est hydroélectrique
 - 13.5% de la production d'énergie renouvelable est éolienne

Total renewable power capacity, end-2020 (Gigawatts)

- 1. China (908)
- 2. United States (313)
- 3. Brazil (150)
- 4. India (142)
- 5. Germany (132)
- ...7. Canada (50)

Plan de la présentation

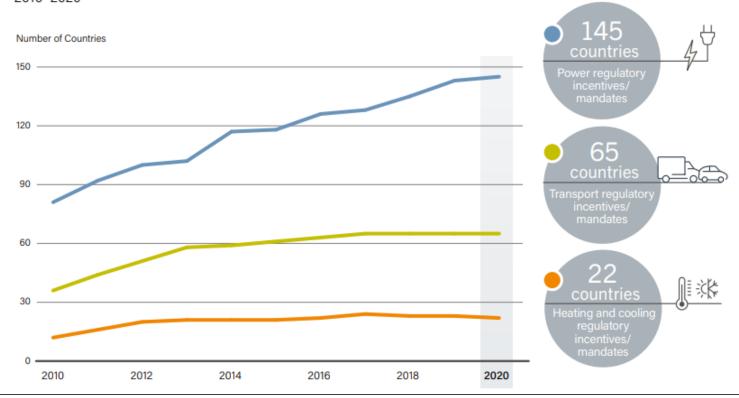
- Introduction et objectifs de la capsule
- Technologies, production et consommation
- Politiques, cibles et réglementations
- Marchés et investissements
- Conclusion


- Le focus du REN21 est particulièrement mis sur les politiques, cibles et réglementations des divers pays, ainsi que sur les investissements
- La plupart des pays ont maintenant des politiques à haut niveau – 197 pays ont signé les Accords de Paris (COP21), qui impliquent des politiques énergétiques
- La coordination entre les divers pays est également importante

• En 2019 et 2020:

POLICIES ⁷			
Countries with renewable energy targets	#	172	165
Countries with renewable energy policies	#	161	161
Countries with renewable heating and cooling targets	#	49	19
Countries with renewable transport targets	#	46	35
Countries with renewable electricity targets	#	166	137
Countries with heat regulatory policies	#	22	22
Countries with biofuel blend mandates ⁸	#	65	65
Countries with feed-in policies (existing)	#	83	83
Countries with feed-in policies (cumulative)9	#	113	113
Countries with tendering (held during the year)	#	41	33
Countries with tendering (cumulative) ⁹	#	111	116

- Les cibles sont souvent l'incarnation des politiques énergétiques visant à réagir à la crise actuelle
- 165 pays avaient des cibles d'utilisation d'énergies renouvelables pour 2020


 Cependant, se donner des cibles ne veut pas nécessairement dire qu'on les atteint:

- Généralement, les cibles ne sont pas atteintes à cause de manquements au niveau de la réglementation
- Politiques et cibles sont généralement
 « théoriques » et bien acceptées, mais la
 réglementation peut imposer un haut coût
 politique si elle est impopulaire, ou rencontrer
 l'opposition de groupes d'intérêt (lobbies)

- Vu les coûts d'infrastructure et les coûts d'exploitation, la réglementation et les incitatifs sont encore essentiels pour entretenir et accélérer le mouvement vers les énergies renouvelables
- La chute remarquable des coûts de production de certaines énergies renouvelables (éolien, photovoltaïque) et du stockage (batteries Liion) aide indubitablement

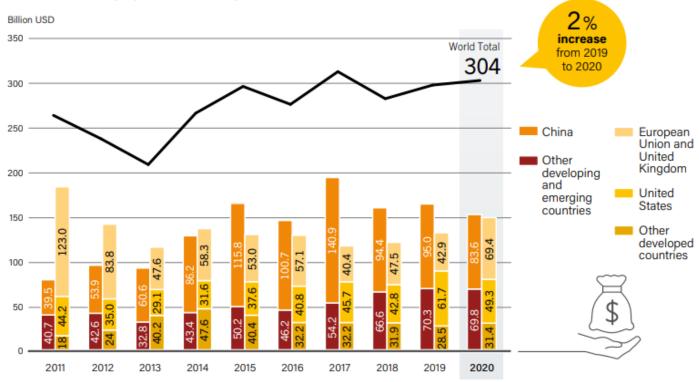
Number of Countries with Renewable Energy Regulatory Policies 2010–2020

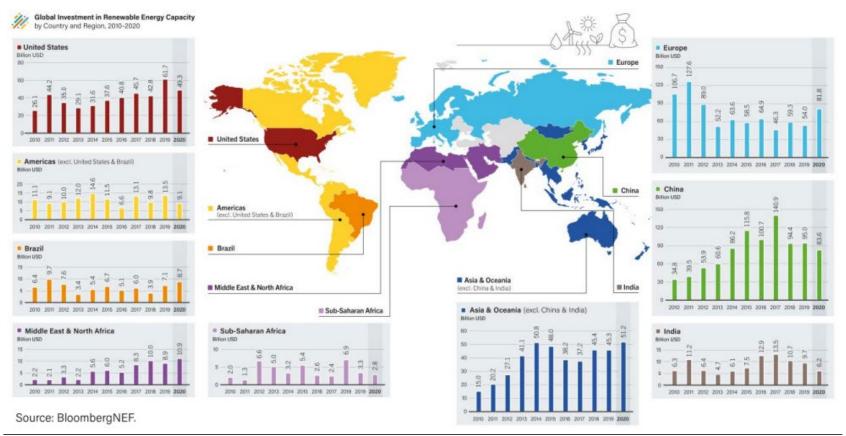
- Progrès significatifs en 10 ans pour la génération d'électricité, beaucoup moins dans le transport et le thermique – comparer avec les proportions...
- Exemples de mesures:
 - Taxe ou bourse carbone
 - Incitatifs fiscaux à l'installation ou l'utilisation d'énergies renouvelables
 - Réseaux électriques bidirectionnels (feed-in tariffs)
 - Exigences en biocarburants
 - Rabais aux achats de véhicules électriques

Au Canada:

- Annonce d'un plan pour augmenter la taxe carbone de 50 \$CAN (2022) à 170 \$CAN (2030) par tonne de CO₂
- Mise en place de standards sur la consommation d'essence des véhicules lourds
- Interdiction de vente de véhicules à essence à partir de 2035
- Le Québec veut que 65% des autobus scolaires soient électriques en 2030, 100% en 2035 (1% en 2021)

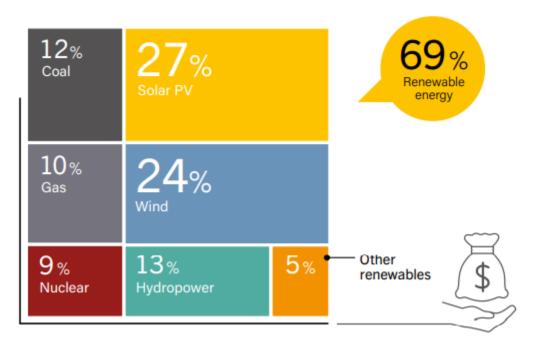
Plan de la présentation

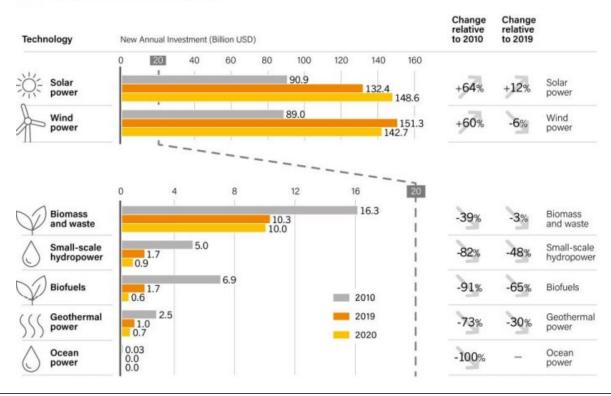

- Introduction et objectifs de la capsule
- Technologies, production et consommation
- Politiques, cibles et réglementations
- Marchés et investissements
- Conclusion


Marchés et investissements

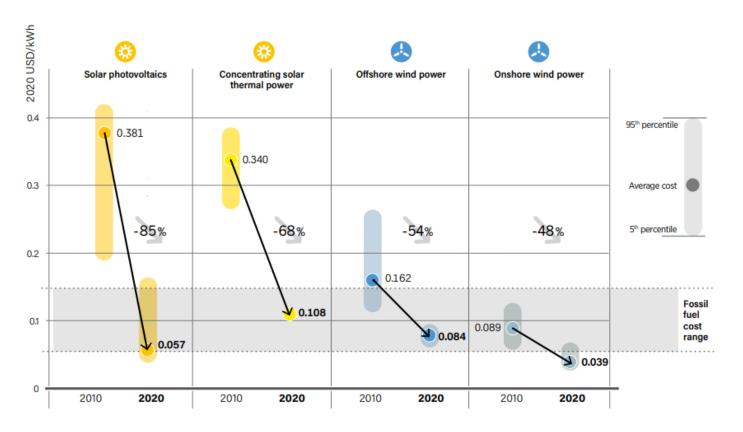
- Les investissements publics sont une autre facette des politiques énergétiques
- Ils sont un pendant important aux aspects réglementaires et sont souvent financés partiellement par ceux-ci
- Les investissements privés doivent laisser entrevoir un retour à court ou moyen terme (enchères/appels d'offres)

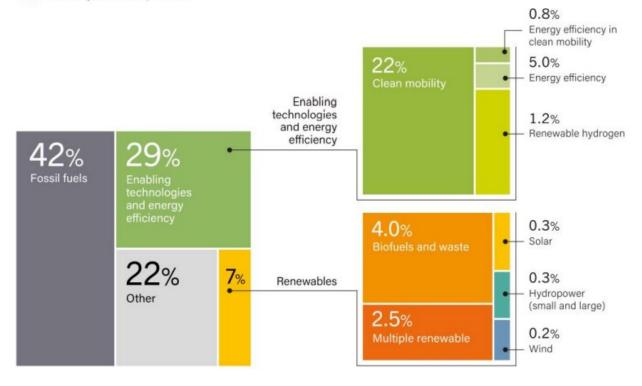
Global Investment in Renewable Power Capacity


Developed, Emerging and Developing Countries, 2010-2020



- Les économies émergentes et en voie de développement continuent les investissements élevés en énergies renouvelables
- L'évolution des entreprises et des fonds d'investissement se poursuit en faveur des énergies renouvelables
- La Chine investit également énormément dans des projets situés hors de son territoire




Global Investment in Renewable Energy Capacity by Technology, 2010, 2019 and 2020

- Nette domination du solaire et de l'éolien
- Toutes les autres technologies sont en chute marquée – coûts plus élevés, défis technologiques, problèmes normatifs ou réglementaires
- 60% des investissements liés aux changements climatiques sont faits dans les énergies renouvelables

Energy Investments in COVID-19 Recovery Packages of 31 Countries
January 2020 to April 2021

- De nombreux investissements ont été annoncés pour relancer les économies post-pandémie – six fois plus en énergies fossiles qu'en énergies renouvelables
- C'est un clair indicateur de l'énorme poids économique et politique qu'ont encore les industries liées aux énergies fossiles
- Les technologies d'utilisation et d'efficacité (hydrogène, véhicules électriques, etc.) ont cependant une belle part (29%)

Annual Investment / Net Capacity Additions / Production in 2020

Technologies ordered based on total capacity additions in 2020.

	1	2	3	4	5
Solar PV capacity	China	United States	Vietnam	Japan	Germany
Wind power capacity	China	United States	Brazil	Netherlands	Spain or Germany
O Hydropower capacity	China	Turkey	Mexico	India	Angola
@ Geothermal power capacity	Turkey	United States	Japan	-	-
Concentrating solar thermal power (CSP) capacity	China	-	-	-	-
Solar water heating capacity	China	Turkey	India	Brazil	United States
Ethanol production	United States	Brazil	China	Canada	India
Biodiesel production	Indonesia	Brazil	United States	Germany	France

 La Chine joue un énorme rôle dans les investissements (27,5% en 2020), de par la taille de son industrie et de son économie, mais aussi à cause de ses politiques en la matière

• Les États-Unis, le Brésil et la Turquie ont également une forte présence

• Au Canada:

- Investissements dans l'énergie des marées (28,5M \$CAN en 2020)
- Annonces de plans d'infrastructures, incluant 166M
 \$CAN pour l'adaptation du secteur agricole
- Investissements d'Hydro-Québec dans la production d'hydrogène « propre » à Varennes

Plan de la présentation

- Introduction et objectifs de la capsule
- Technologies, production et consommation
- Politiques, cibles et réglementations
- Marchés et investissements
- Conclusion

Conclusion

 Le Global Status Report est un bon outil pour suivre l'évolution de la production d'énergie renouvelable

 On y retrouve des statistiques, mais aussi des analyses et des exemples et cas anecdotiques

 Idéalement, il est à combiner avec d'autres outils et sources d'information (rapport de l'IEA, rapport BP, etc.)

Conclusion

 La part des énergies renouvelables dans la consommation globale progresse, mais trop lentement pour atteindre les objectifs actuels

• Le solaire et l'éolien sont toujours largement en tête, particulièrement grâce à leurs coûts

 Ce succès se fait au détriment des autres formes d'énergie renouvelables, plus coûteuses et donc moins attrayantes pour les investisseurs

Si vous avez des questions à formuler, veuillez les poser par écrit et spécifier le nom et le numéro de la présentation. Nous vous répondrons le plus rapidement possible.

Période de questions

Sources et références

- REN21, Global Status Report 2022
- REN21, Global Status Report 2021
- REN21, Global Status Report 2020
- REN21, Trends in Canada: Facts from the Renewables 2021 Global Status Report