ENR – ÉNERGIE et ÉNERGIES RENOUVELABLES

Mise à jour : 2021-04-15

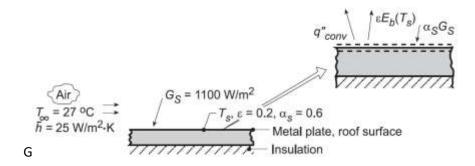
2.4 EXERCICES ÉNERGIE THERMIQUE

Exercice n° 2.4.k : Le toit métallique

Une irradiation solaire de $1100~\frac{W}{m^2}$ est incidente sur un grand toit métallique plat et horizontal un jour où le vent qui souffle sur le toit provoque un coefficient de transfert de chaleur par convection de $25~\frac{W}{m^2.K}$. La température de l'air extérieur est de 27°C, l'absorptivité de la surface métallique pour le rayonnement solaire incident est de 0,60, l'émissivité de la surface métallique est de 0,20 et le toit est bien isolé par le bas.

QUESTIONS

Question 1 : Estimer la température du toit dans des conditions de régime permanent.


<u>Question 2</u>: Explorer l'effet des changements de l'absorptivité, de l'émissivité et du coefficient de convection sur la température à l'état stationnaire.

ENR – ÉNERGIE et ÉNERGIES RENOUVELABLES

Mise à jour : 2021-04-15

REPONSES

Schéma

Hypothèses: (1) Conditions stationnaires, (2) L'arrière de la plaque est parfaitement isolé, (3) Irradiation négligeable de la plaque par l'émission atmosphérique (ciel)

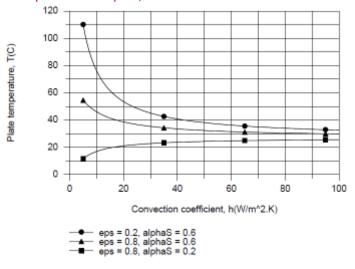
Question 1 : Estimer la température du toit dans des conditions de régime permanent.

Effectuer un bilan énergétique de surface sur le côté exposé de la plaque,

$$\alpha_S G_S - q_{conv}^{\prime\prime} - \varepsilon E_b(T_S) = 0$$

$$\alpha_S G_S - \bar{h}(T_S - T_\infty) - \varepsilon \sigma T_S^4 = 0$$

Substitution de valeurs numériques et utilisation de températures absolues,


$$0.6 \times 1100 \frac{W}{m^2} - 25 \frac{W}{m^2.K} (T_S - 300)K - 0.2 \left(5.67 \times 10^{-8} \frac{W}{m^2.K^4} \right) T_S^4 = 0$$

Regroupement, $8160 = 25T_S + 1,1340 \times 10^{-8}T_S^4$, et exécution d'une solution d'essai et d'erreur,

$$T_S = 321,5K = 48,5$$
°C

Question 2 : Explorer l'effet des changements de l'absorptivité, de l'émissivité et du coefficient de convection sur la température à l'état stationnaire.

En utilisant le modèle IHT First Law pour un mur plan, les résultats suivants ont été obtenus :

ENR – ÉNERGIE et ÉNERGIES RENOUVELABLES

Mise à jour : 2021-04-15

Indépendamment de la valeur de \bar{h} , T diminue avec l'augmentation de ε (en raison de l'augmentation des émissions) et la diminution de α_S (en raison de l'absorption réduite de l'énergie solaire). Pour α_S modéré à grand et / ou petit ε (transfert de rayonnement net vers la surface), T diminue avec l'augmentation de \bar{h} en raison d'un refroidissement amélioré par convection. Cependant, pour un α_S petit et un ε grand, l'émission dépasse l'absorption, dictant le transfert de chaleur par convection vers la surface et donc $T < T_{\infty}$. Lorsque \bar{h} augmente, $T \to T_{\infty}$, quelles que soient les valeurs de α_S et ε .

Commentaires : Pour minimiser la température du toit, la valeur de $\frac{\varepsilon}{\alpha_S}$ doit être maximisée.