

ENR – Énergie et énergies renouvelables

10. Les énergies renouvelables

10.2 - Les technologies de captation et de conversion Partie 6 - Énergie océanique

Daniel R. Rousse, ing., Ph.D.

Département de génie mécanique

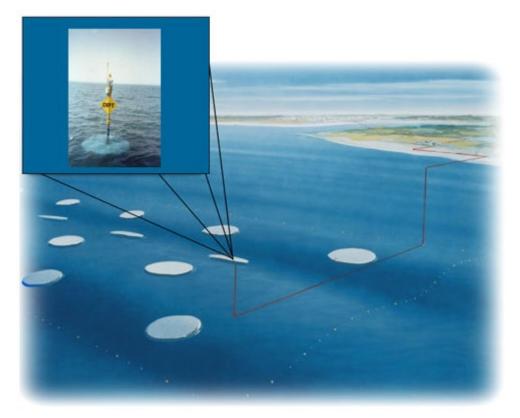
Pierre-Luc Paradis, ing. Ph.D.

Tanguy Lunel, ing., M. Sc. A.

Plan de la présentation

- Introduction et objectifs de la capsule
- Les technologies de captation et de conversion
 - L'énergie océanique (dans la mer)
 - Marées
 - Vents marins (off-shore wind, Module 12)
 - Vagues
 - Courants
 - Conversion de l'énergie océanique thermique (OTEC)
 - Biomasse marine
 - Gradients salins
- Conclusion

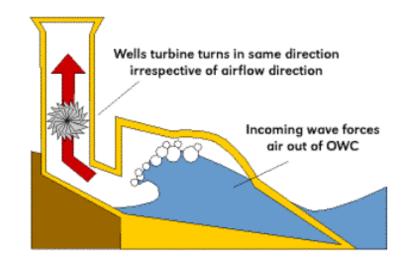
- Les marées
 - Les moulins à marée (Bréhat, Olhão)
 - Les usines marémotrices(La Rance, 1966)



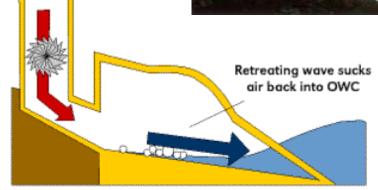
- Les vagues (bouée)
 - Les vagues font monter et descendre le flotteur
 - Une pompe hydraulique est alimentée par le mouvement
 - La pompe actionne un générateur

Visitez: oceanpowertechnologies.com

Power Buoy



http://www.oceanlinx.com/


2016-06-07

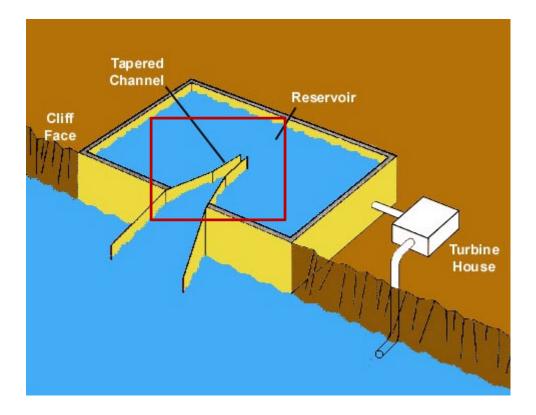
Les vagues (colonne d'eau oscillante)

http://www.fujitaresearch.com//

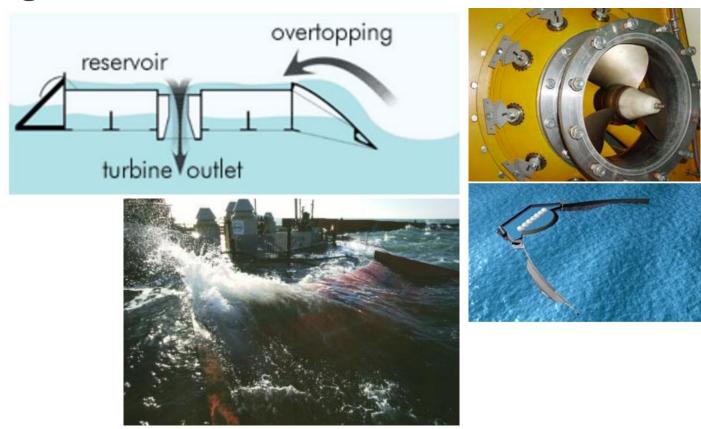
2016-06-07

Mighty Whale by JAMSTEC

http://www.jamstec.go.jp/ 2016-06-07

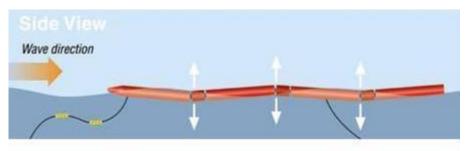

Oceanlinx

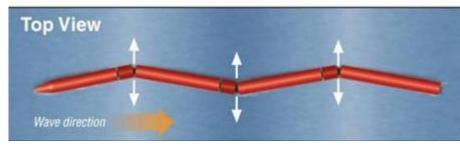
http://www.oceanpowertechnologies.com/ 2016-06-07


ENR – Énergie et énergies renouvelables

Tapchan by Boyle

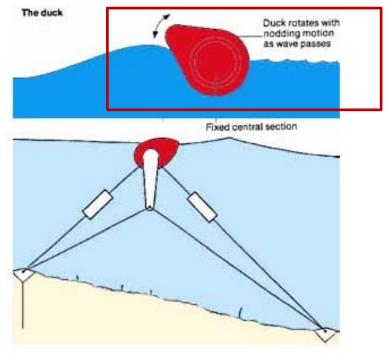
http://www.see.murdoch.edu.au/ 2016-06-07


Wave Dragon

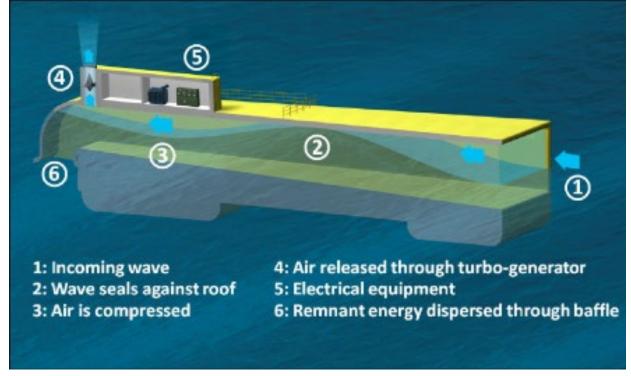


http://www.wavedragon.net/ 2016-06-07

- Le serpent de mer, PELAMIS
 - 700 tonnes, 750 kW



http://www.pelamiswave.com/


YouTube: Pelamis Conclusion

Salter Duck by Ramage

http://www.see.murdoch.edu.au/ 2016-06-07

- Offshore Wave Energy Limited
 - D500, 500 kW, 46mx18m, 550tonnes

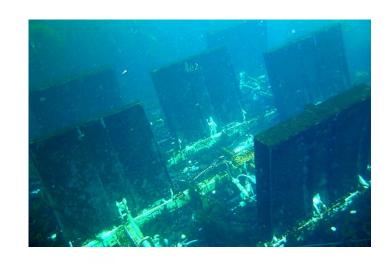
http://www.owel.co.uk/

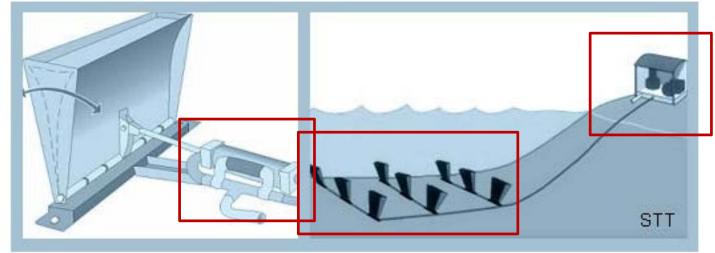
Archimedes Wave Swing

http://www.wavedswing.com/ 2016-06-08

Oyster by Aquamarine Power

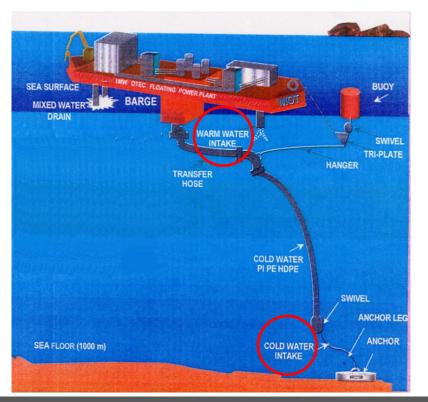
http://www.aquamarinepower.com/ 2016-06-07

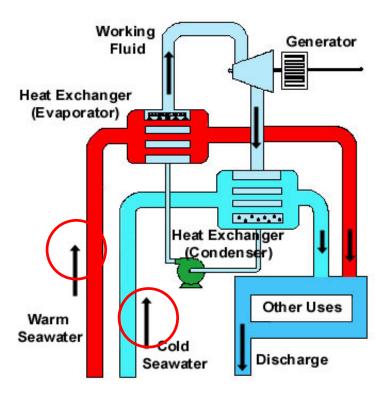



• CETO

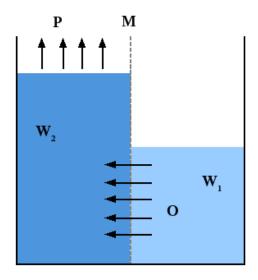
http://www.oceanpowertechnologies.com/ 2016-06-07

Les courants (AW-Energy's WaveRoller)

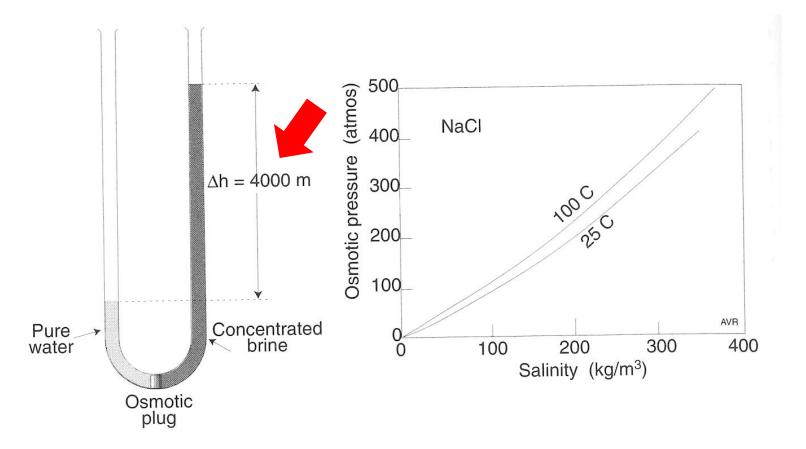


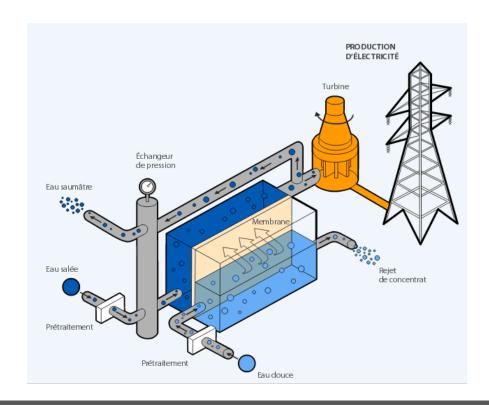


http://www.see.murdoch.edu.au/ 2016-06-07



- Le thermique océanique (OTEC)
 - Quel est le rendement maximal théorique d'une usine de conversion thermique océanique étang solaire pour lequel T_h = 24°C et T_c = 4°C?




- L'osmose : principe
 - Gradient de concentration + membrane osmotique (laisse passer le solvant mais pas le soluté) → écoulement net du milieu à faible concentration vers celui a forte concentration

• Pression osmotique et température

- L'osmose : application
 - La différence de hauteur des réservoirs permet de convertir l'énergie potentielle en énergie électrique.

• L'osmose :

- Avantages
 - Production continue
 - Efficacité prévue à maturité: 60-75 %
 - Coût prévu à maturité (Statkraft): 7-14¢/kWh
 - Production près des centres
- Désavantages
 - Coûts prohibitifs en production
 - Encrassement et dégradation des membranes
 - Modification de l'habitat (salinité, turbidité)

- L'osmose : en conclusion
 - Grand potentiel en théorie
 - Phase de prototypes/démonstration
 - Aucune viabilité financière en pratique

http://www.forwardosmosistech.com/statkraft-discontinues-investments-in-pressure-retarded-osmosis/

- Recherches actuelles
 - Dielectric materials (matériaux électroactifs)
 - Chiba et al. (2008), Innovative Power Generators for Energy Harvesting Using Electroactive Polymer Artificial Muscles, Proc SPIE, San Diego, CA, USA, SPIE, 6927, 692715
 - Piezoelectric materials
 - Tanaka et al. (2015), An Experimental Study of Wave Power Generation Using a Flexible Piezoelectric Device, Journal of Ocean and Wind Energy 2(1) 28–36

Main problem of these technologies : XXXX € / W

Recherches actuelles

- SRI International
 - HYPER DRIVE corporation
 - Electroactive Polymer
 Artificial Muscle (EPAM)
- SBM Offshore
 - offshore wind,
 - tidal,
 - wave
 - and Ocean Thermal Energy Conversion (OTEC)

- Les autres capsules de formation en énergie océanique
 - 16.0 L'énergie océanique-En bref
 - 16.1 Présentation de l'énergie océanique
 - 16.2 Formes et sources de l'énergie océanique
 - 16.3 Distribution et quantification de l'énergie océanique
 - 16.4 Techniques d'exploitation de l'énergie océanique
 - 16.5 Contraintes et enjeux de l'énergie océanique

Plan de la présentation

- Introduction et objectifs de la capsule
- Les technologies de captation et de conversion
- Conclusion

Conclusions

- L'objectif de cette série de présentations consistait à faire un tour d'horizon des différentes technologies de captation et de conversion d'énergie qui peuvent, sous certaines conditions, être considérées renouvelables.
- On peut conclure de cette série de présentations et de la précédente, que les énergies renouvelables sont en fait quasiment toutes originaires d'une seule et même source : le soleil.
- Les façons de capter et de convertir ces énergies sont diverses et variées, et sont encore en développement pour plusieurs, notamment dans le domaine océanique et marin.

Conclusions

- Les énergies renouvelables peuvent cependant posséder un intérêt et une empreinte environnementale variables;
- Elles sont à étudier localement au cas par cas en fonction de critères historique, sociologique, géographique, politique, technique et économique;
- Le coût (facteur économique) des technologies de captation et de conversion reste, le plus souvent, le facteur crucial ou prépondérant pour le développement et surtout l'implantation des énergies renouvelables.

Conclusions

- Après ce rapide tour d'horizon, le cours *Énergies Renouvelables* va par la suite aborder les sujets suivants:
 - M11: Énergie solaire, 2 semaines
 - M12: Énergie éolienne, 2 semaines
 - M13: Énergie géothermique, 1 semaine
 - M14: Énergie biologique, 2 semaines
 - M15: Énergie hydraulique, 1 semaine
 - M16: Énergie océanique, 1 semaine
 - M17: Stockage, 1 semaine

Lorsque cette capsule de formation est présentée en asynchrone (PDF récupérable sur le site du cours), si vous avez des questions à formuler, veuillez les poser par écrit et spécifier le nom et le numéro de la présentation. Nous vous répondrons le plus rapidement possible.

Période de questions

