ENR – ÉNERGIE et ÉNERGIES RENOUVELABLES

Mise à jour : 2021-04-17

11.0 EXERCICES ÉNERGIE SOLAIRE

Exercice n° 11.3.j : Angle d'incidence solaire 2

Une surface est orientée à 45° par rapport à l'horizontale et pointe à 15° à l'ouest du sud.

QUESTIONS

Question 1 : Quel est l'angle d'incidence du rayonnement direct sur cette surface située à Madison à 10h30 (temps solaire) le 13 février ?

ENR – ÉNERGIE et ÉNERGIES RENOUVELABLES

Mise à jour : 2021-04-17

REPONSES

<u>Question 1</u>: Quel est l'angle d'incidence du rayonnement direct sur cette surface située à Madison à 10h30 (temps solaire) le 13 février ?

Calculate the angle of incidence of beam radiation on a surface located at Madison, Wisconsin, at 10:30 (solar time) on February 13 if the surface is tilted 45° from the horizontal and pointed 15° west of south.

Solution

Under these conditions, n=44, the declination δ from Equation 1.6.1 is -14° , the hour angle $\omega=-22.5^{\circ}$ (15° per hour times 1.5 h before noon), and the surface azimuth angle $\gamma=15^{\circ}$. Using a slope $\beta=45^{\circ}$ and the latitude ϕ of Madison of 43° N, Equation 1.6.2 is

$$\cos \theta = \sin(-14) \sin 43 \cos 45 - \sin(-14) \cos 43 \sin 45 \cos 15$$

+ $\cos(-14) \cos 43 \cos 45 \cos(-22.5)$
+ $\cos(-14) \sin 43 \sin 45 \cos 15 \cos(-22.5)$
+ $\cos(-14) \sin 45 \sin 15 \sin(-22.5)$
 $\cos \theta = -0.117 + 0.121 + 0.464 + 0.418 - 0.068 = 0.817$
 $\theta = 35^{\circ}$

There are several commonly occurring cases for which Equation 1.6.2 is simplified. For fixed surfaces sloped toward the south or north, that is, with a surface azimuth angle γ of 0° or 180° (a very common situation for fixed flat-plate collectors), the last term drops out.

For vertical surfaces, $\beta = 90^{\circ}$ and the equation becomes

$$\cos \theta = -\sin \delta \cos \phi \cos \gamma + \cos \delta \sin \phi \cos \gamma \cos \omega + \cos \delta \sin \gamma \sin \omega \quad (1.6.4)$$

For horizontal surfaces, the angle of incidence is the zenith angle of the sun, θ_z . Its value must be between 0° and 90° when the sun is above the horizon. For this situation, $\beta = 0$, and Equation 1.6.2 becomes

$$\cos \theta_z = \cos \phi \cos \delta \cos \omega + \sin \phi \sin \delta \qquad (1.6.5)$$

The solar azimuth angle γ_s can have values in the range of 180° to -180° . For north or south latitudes between 23.45° and 66.45° , γ_s will be between 90° and -90° for days less than $12\,\mathrm{h}$ long; for days with more than $12\,\mathrm{h}$ between sunrise and sunset, γ_s will be greater than 90° or less than -90° early and late in the day when the sun is north of the east-west line in the northern hemisphere or south of the east-west line in the southern hemisphere. For tropical latitudes, γ_s can have any value when $\delta - \phi$ is positive in the northern hemisphere or negative in the southern, for example, just before noon at $\phi = 10^\circ$ and $\delta = 20^\circ$, $\gamma_s = -180^\circ$, and just after noon $\gamma_s = +180^\circ$. Thus γ_s is negative when the hour angle is negative and positive when the hour angle is positive. The sign function in Equations 1.6.6 is equal to +1 if ω is positive and is equal to -1 if ω is negative:

$$\gamma_S = \operatorname{sign}(\omega) \left| \cos^{-1} \left(\frac{\cos \theta_z \sin \phi - \sin \delta}{\sin \theta_z \cos \phi} \right) \right| \tag{1.6.6}$$