

Plan

- Plan de cours et informations
- Intro à MAT380
- Chapitre 1 : Vecteurs

Cerisiers _

Maison de thé

Erables japonais

Évaluations

Pondération

- Devoirs et Mini-tests 35%
- Examen INTRA 30%
- Examen FINAL 35%

Examens en deux parties

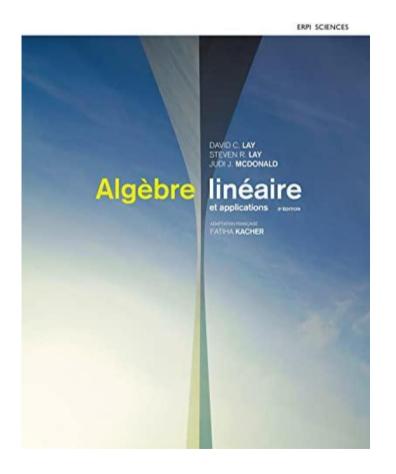
• INTRA et FINAL : partie sans et partie avec calculatrice

Double seuil de passage

- Évaluations individuelles
- Moyenne globale au cours

Matériel

Référence optionnelle : LAY, David C. *Algèbre linéaire et ses applications*, 5^e édition (2017), ERPI.



Powerpoints et documents sur Moodle

Calculatrice TI-nspire CX II CAS

(Disponible à la Coop ÉTS ou ailleurs)

Page Moodle

INFORMATIONS IMPORTANTES

MATIÈRE ET EXERCICES À CHAQUE SEMAINE

DATES ET CONTENU D'ÉVALUATIONS

DOCUMENTS ET POWERPOINTS

RESSOURCES

Déroulement des séances

Théorie

Exemples

Pratique

Introduction à MAT380

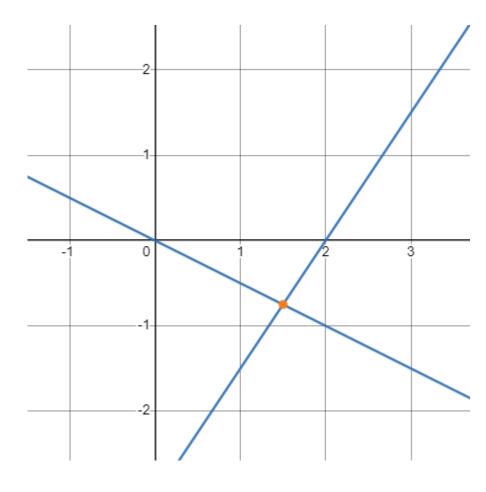
Algèbre: Résoudre des équations

Linéaire: Qui ont rapport aux droites, aux plans

À son plus simple

Algèbre (calculer)

$$2x + 4y = 0$$


$$3x - 2y = 6$$

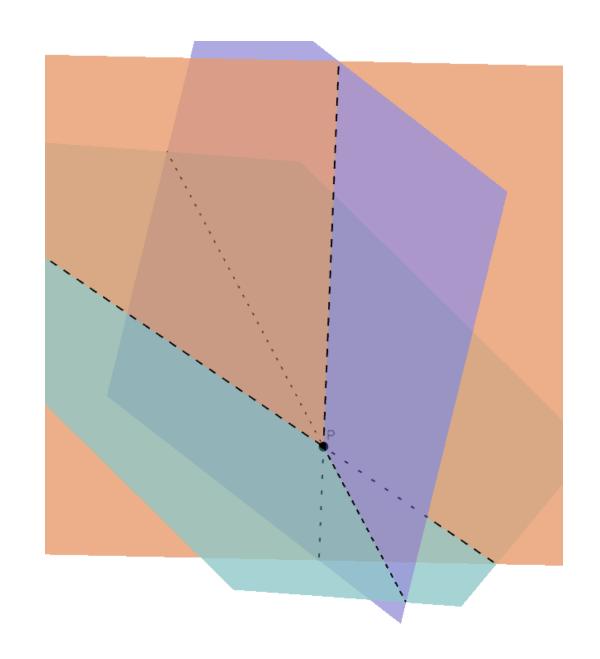
$$x = 3/2$$

$$x = 3/2$$
$$y = -3/4$$

Géométrie (visualiser)

Ensuite ...

$$x + y + z = 2$$


$$2x - 3y - 7z = 4$$

$$3x - y + z = -3$$

$$x = 1/26$$

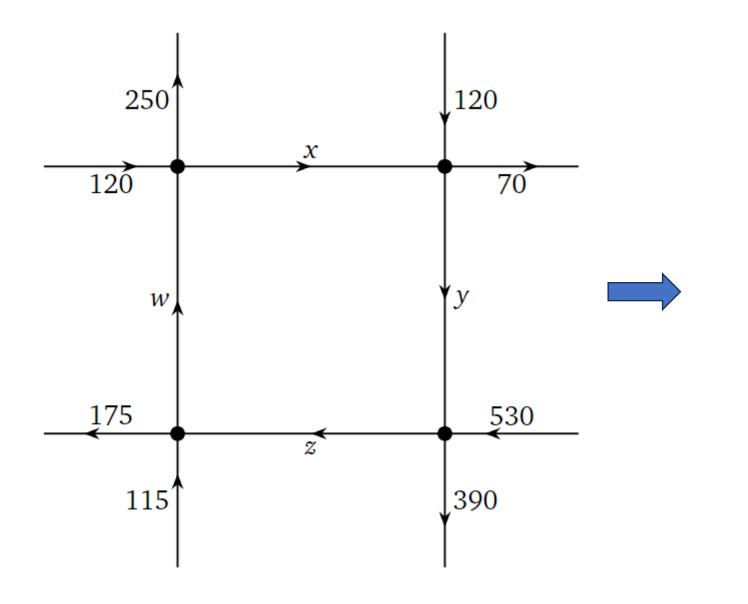
$$y = 33/13$$

$$z = -15/26$$

Et dans beaucoup de cas ...

$$6x_1 - 4x_2 + 11x_3 + 19x_4 - 2x_5 + 3x_6 = 141$$

$$3x_1 + x_2 + 18x_3 + 0x_4 - 20x_5 + x_6 = 3147$$


$$x_1 - 7x_2 - 3x_3 + 8x_4 + x_5 - 13x_6 = 27$$

$$0.5x_1 - 2x_2 + 0x_3 - 25x_4 + 2x_5 - 4x_6 = -21$$

• • •

Existe-t-il une solution? Plusieurs solutions?
Sinon, comment trouver la meilleure approximation?
Et si on changeait la valeur de 141?
Comment faire si on avait des milliers d'équations et d'inconnues?

Flux du trafic (véhicules/h)

Système d'équations linéaires

$$\begin{cases} w + 120 = x + 250 \\ x + 120 = y + 70 \\ y + 530 = z + 390 \\ z + 115 = w + 175. \end{cases}$$

Balancer une réaction chimique

$$\underline{x}$$
 $C_2H_6 + \underline{y}$ $O_2 \rightarrow \underline{z}$ $CO_2 + \underline{w}$ H_2O

Système d'équations linéaires

$$2x = z$$
$$6x = 2w$$
$$2y = 2z + w$$

Évolution d'une population animale

Observations:

- La moitié des nouveaux lapins survivent la première année.
- Parmi ceux-ci, la moitié survit à la deuxième année.
- 3. La durée de vie maximale est de trois ans.
- Les lapins ont respectivement 0,6 et 8 bébés à leur 1^{ère}, 2^e et 3^e années de vie.

Si on connait la population de lapins qui sont à leur 1ère, 2^e et 3^e année de vie en 2016, quelle sera la population de lapins l'année suivante?

$$\begin{cases} 6y_{2016} + 8z_{2016} = x_{2017} \\ \frac{1}{2}x_{2016} & = y_{2017} \\ \frac{1}{2}y_{2016} & = z_{2017} \end{cases}$$

Système d'équations linéaires

Trajectoire d'un astéroïde (Ch.8)

La trajectoire elliptique d'un astéroïde passe par les points suivants :

$$(0,2)$$
 $(2,1)$ $(1,-1)$ $(-1,-2)$ $(-3,1)$ et $(-1,-1)$

Sachant que son orbite est elliptique, elle peut se décrire par une équation de la forme suivante :

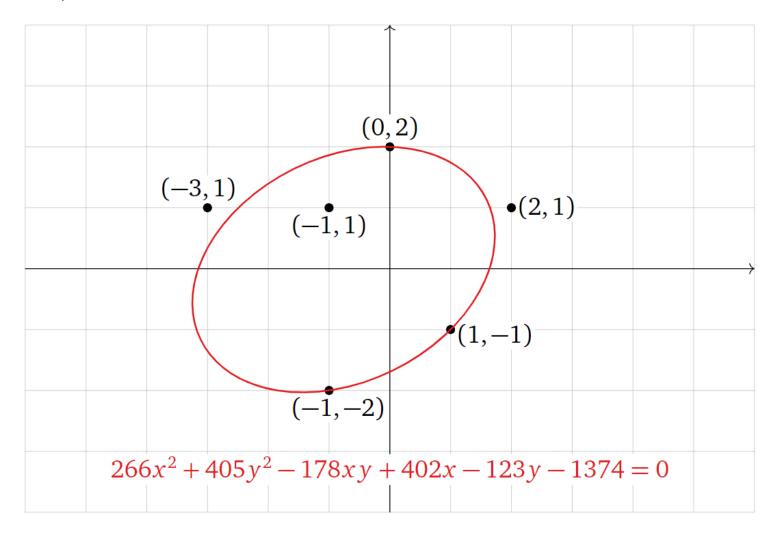
$$x^2 + By^2 + Cxy + Dx + Ey + F = 0$$

Quelle est l'équation de son orbite ? Trouvons B,C,D,E,F avec un système d'équations linéaires :

$$(0)^{2} + B(2)^{2} + C(0)(2) + D(0) + E(2) + F = 0$$

$$(2)^{2} + B(1)^{2} + C(2)(1) + D(2) + E(1) + F = 0$$

$$(1)^{2} + B(-1)^{2} + C(1)(-1) + D(1) + E(-1) + F = 0$$


$$(-1)^{2} + B(-2)^{2} + C(-1)(-2) + D(-1) + E(-2) + F = 0$$

$$(-3)^{2} + B(1)^{2} + C(-3)(1) + D(-3) + E(1) + F = 0$$

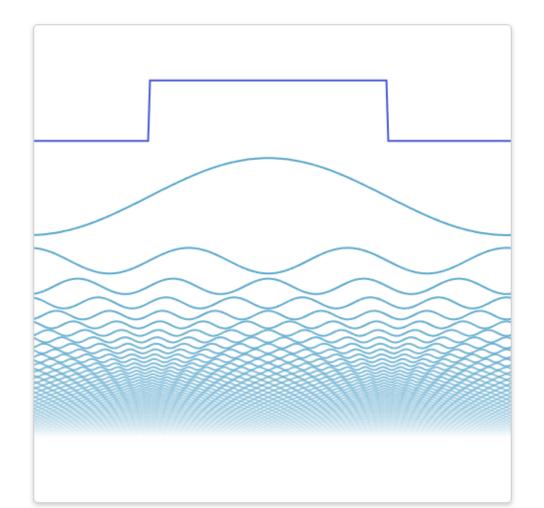
$$(-1)^{2} + B(-1)^{2} + C(-1)(-1) + D(-1) + E(-1) + F = 0$$

Trajectoire d'un astéroïde (Ch.8)

Le système n'a pas de solution exacte due à des erreurs de mesure, mais on peut trouver la solution qui approxime le mieux le système :

Nous verrons aussi: Compression JPEG (Ch.6)

Résolution: 1440 x 1468 pixels


Il faut **6.3 Mo** pour enregistrer l'image en BMP.

Avec un algorithme de compression JPEG on peut produire une version de bonne qualité pesant seulement 467 359 octets, soit **environ 7% du poids initial**.

Ceci n'est pas surprenant considérant que la moitié de l'image est essentiellement bleue et uniforme!

Analyse de signal (Ch.6)

$$\mathbb{T}_n = \left\{ \sum_{i=0}^n a_i \cos(ix) + b_i \sin(ix) \mid a_i, b_i \in \mathbb{R} \right\}$$



La révolution d'internet en 1998 (Ch.7):

Algorithme PageRank ordonne les pages « par importance » plutôt que par mots clés

- Arts - Humanities, Photography, Architecture, ...
- Business and Economy [Xtra!] - Directory, Investments, Classifieds, ...
- Computers and Internet [Xtra!] - Internet, WWW, Software, Multimedia, ...
- Education - Universities, K-12, Courses, ...
- Entertainment [Xtra!] - TV, Movies, Music, Magazines, ...
- Government - Politics [Xtra!], Agencies, Law, Military, ...
- Health [Xtra!] - Medicine, Drugs, Diseases, Fitness, ...
- News [Xtra!] - World [Xtra!], Daily, Current Events, ...
- Recreation and Sports [Xtra!] - Sports, Games, Travel, Autos, Outdoors, ...
- Reference - Libraries, Dictionaries, Phone Numbers, ...
- Regional - Countries, Regions, U.S. States, ...
- Science - CS, Biology, Astronomy, Engineering, ...
- Social Science - Anthropology, Sociology, Economics, ...
- Society and Culture - People, Environment, Religion, ...

About Google!

I'm feeling lucky

Index contains ~25 million pages (soon to be much

bigger)

Stanford Search Linux Search

Get Google! updates monthly!

Archive

your e-mail Subscribe

Copyright @1997-8 Stanford University