Atelier d'algèbre 2 MAT145

Kathleen Pineau École de technologie supérieure Professeure enseignante associée Automne 2024

Ordre de priorité des opérations, exposants et fractions

L'ordre de priorité des opérations

Lorsqu'on effectue une suite d'opérations sur des nombres réels, on doit respecter l'ordre de priorité suivant.

- 1. On commence par effectuer les opérations situées à l'intérieur des parenthèses. La barre d'une fraction, un radical ou une valeur absolue joue le rôle de parenthèses.
- 2. On calcule ensuite les puissances (exposants).
- 3. On poursuit avec les multiplications et les divisions de gauche à droite.
- 4. On termine avec les additions et les soustractions de gauche à droite.

Lorsqu'on veut modifier cet ordre, on introduit des parenthèses.

Aide-mémoire algèbre et trigo

Opérations arithmétiques

$$a(b+c) = ab + ac$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{a/b}{c/d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bd}$$

$$a^{m}a^{n} = a^{m+n}$$

$$(ab)^{n} = a^{n}b^{n}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$$

$$\sqrt[n]{a^{m}} = (\sqrt[n]{a})^{m} = a^{\frac{m}{n}}$$

$$\sqrt[n]{\frac{a}{b}} = \sqrt[n]{a}\sqrt[n]{b}$$

L'exercice suivant est extrêmement important!

2.5 Dérivez les fonctions suivantes. Donnez le résultat avec exposants positifs et dénominateur commun.

(a)
$$f(x) = 4x^3 - 5x^2 + 4x - 80$$

(b)
$$f(x) = x^3 + 5$$

(c)
$$f(x) = \sqrt{x} + x$$

(d)
$$f(x) = x - \sqrt[3]{x^5}$$

(e)
$$f(x) = \frac{2}{x}$$

(f)
$$f(x) = \frac{1}{x^4} - x^4$$

(g)
$$f(x) = \pi x^2$$

(h)
$$f(x) = \frac{2}{x^4}$$

(i)
$$f(x) = \sqrt{3}x^5$$

(j)
$$f(x) = \frac{2+x+8x^3}{x^4}$$

(k)
$$f(x) = \frac{1}{\sqrt[3]{x}} + \sqrt[3]{x}$$

(l)
$$f(x) = x^2(2x^4 - 6x^3)$$

(m)
$$f(x) = \frac{x^4 + x^2 + 5}{x^2}$$

(n)
$$f(x) = x + \pi^2$$

(o)
$$f(x) = \frac{16x^8 + 6x^4 + 1}{2x^4}$$

(p)
$$f(x) = \frac{5x^2 - 2}{x^2}$$

(q)
$$f(x) = 10\sqrt[5]{x^6}$$

(r)
$$f(x) = 6\sqrt[3]{x^2}$$

(s)
$$f(x) = \frac{\sqrt{x} - 3}{\sqrt{x}}$$

(t)
$$f(x) = (x^3 - 1)(x^3 + 1)$$

(u)
$$f(x) = \frac{12x^{10} - 3x^3 + 4}{4x^2}$$

Pour répondre à cette question, on doit

- ✓ connaitre l'ordre de priorité des opérations
- ✓ distinguer entre un terme et un facteur
- utiliser les règles des exposants
- traduire les radicaux en exposants fractionnaires
- utiliser les propriétés des fractions pour réécrire et simplifier avant de dériver
- ✓ (мат145) utiliser les règles et les di formules de dérivation
- mettre au dénominateur commun

Rappels : ordre de priorité, termes et facteurs.

Encadrer les termes et traduire sous la forme verticale

$$5x \div 3y - (2x+1) \div x - 1$$

L'expression $5x \div 3y - (2x+1) \div x - 1$ ressemble beaucoup à $5x \div (3y) - (2x+1) \div (x-1)$ mais elle est différente. Les parenthèses y font pour beaucoup!

Il y a 3 termes dans $5x \div 3y - (2x + 1) \div x - 1$.

$$5x \div 3y - (2x+1) \div x - 1 = \boxed{5x \div 3y} + \boxed{-(2x+1) \div x} + \boxed{-1}$$

Encore une fois, les multiplications et les divisions s'effectuent de gauche à droite. Ainsi,

$$5x \div 3y = 5 \cdot x \div 3 \cdot y = ((5 \cdot x) \div 3) \cdot y = \frac{5 \cdot x}{3} \cdot y = \frac{5xy}{3}.$$

La dernière égalité, $\frac{5 \cdot x}{3} \cdot y = \frac{5xy}{3}$, résulte d'une propriété des fractions. Celles-ci seront présentées à la section suivante.

Finalement, puisque

$$-(2x+1) \div x = -\frac{2x+1}{x}$$

on a

$$5x \div 3y - (2x+1) \div x - 1 = \frac{5xy}{3} - \frac{2x+1}{x} - 1.$$

1

Coefficient et exposant

Le coefficient indique le nombre d'occurrences d'un terme dans une addition.

$$4a = a + a + a + a$$

Ici, 4 est un coefficient qui indique qu'il y a 4 termes a dans l'addition.

L'exposant indique le nombre d'occurrences d'un facteur dans une multiplication.

$$a^4 = a \cdot a \cdot a \cdot a$$

Ici, 4 est un exposant qui indique qu'il y a 4 facteurs a dans la multiplication.

Exposants entiers

1)
$$x^3x^2 = x \cdot x \cdot x \cdot x \cdot x = x^{3+2} = x^5$$

2)
$$(x^3)^2 = x^3 \cdot x^3 = x^{3 \times 2} = x^6$$

3)
$$\frac{x^3}{x^2} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x}} \stackrel{\text{si } x \neq 0}{=} x^{3-2} = x^1 = x$$

4)
$$\frac{x^2}{x^3} = \frac{\cancel{x} \cdot \cancel{x} \cdot 1}{\cancel{x} \cdot \cancel{x} \cdot x} \stackrel{\text{si } x \neq 0}{=} x^{2-3} = x^{-1} = \frac{1}{x}, \text{ si } x \neq 0$$

Aide-mémoire algèbre et trigo

$$a^m a^n = a^{m+n} \qquad \qquad \frac{a^m}{a^n} = a^{m-n}$$

$$(ab)^n = a^n b^n \qquad (a^m)^n = a^{mn}$$

$$a^{-n} = \frac{1}{a^n} \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Aide-mémoire algèbre et trigo

$$a^m a^n = a^{m+n} \qquad \qquad \frac{a^m}{a^n} = a^{m-n}$$

$$(ab)^n = a^n b^n \qquad (a^m)^n = a^{mn}$$

$$a^{-n} = \frac{1}{a^n} \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

5)
$$x^0 = 1$$
, si $x \neq 0$

6)
$$(xy)^2 = (xy)(xy) = x^2y^2$$

7)
$$-3^2 = -9$$
 mais $(-3)^2 = (-3)(-3) = 9$

Exemples de simplification

1)
$$\frac{a^{-3}b}{a^2b^2}$$

$$2) \frac{9a(bc)^0}{\left(-3ab\right)^2}$$

Aide-mémoire algèbre et trigo

Opérations arithmétiques

$$a(b+c) = ab + ac$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{a/b}{c/d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

$$a^{m}a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$(ab)^{n} = a^{n}b^{n}$$

$$(a^{m})^{n} = a^{mn}$$

$$a^{-n} = \frac{1}{a^n} \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Exemples : Écrire autrement avant de dériver

2.5 Dérivez les fonctions suivantes. Donnez le résultat avec exposants positifs et dénominateur commun.

(a)
$$f(x) = 4x^3 - 5x^2 + 4x - 80$$

(b)
$$f(x) = x^3 + 5$$

(c)
$$f(x) = \sqrt{x} + x$$

(d)
$$f(x) = x - \sqrt[3]{x^5}$$

(e)
$$f(x) = \frac{2}{x}$$

(f)
$$f(x) = \frac{1}{x^4} - x^4$$

(g)
$$f(x) = \pi x^2$$

(h)
$$f(x) = \frac{2}{x^4}$$

(i)
$$f(x) = \sqrt{3}x^5$$

(j)
$$f(x) = \frac{2+x+8x^3}{x^4}$$

(k)
$$f(x) = \frac{1}{\sqrt[3]{x}} + \sqrt[3]{x}$$

(1)
$$f(x) = x^2(2x^4 - 6x^3)$$

(m)
$$f(x) = \frac{x^4 + x^2 + 5}{x^2}$$

(n)
$$f(x) = x + \pi^2$$

(o)
$$f(x) = \frac{16x^8 + 6x^4 + 1}{2x^4}$$

(p)
$$f(x) = \frac{5x^2 - 2}{x^2}$$

(q)
$$f(x) = 10\sqrt[5]{x^6}$$

(r)
$$f(x) = 6\sqrt[3]{x^2}$$

(s)
$$f(x) = \frac{\sqrt{x} - 3}{\sqrt{x}}$$

(t)
$$f(x) = (x^3 - 1)(x^3 + 1)$$

(t)
$$f(x) = (x^3 - 1)(x^3 + 1)$$

(u) $f(x) = \frac{12x^{10} - 3x^3 + 4}{4x^2}$

Aide-mémoire algèbre et trigo

Opérations arithmétiques

$$a(b+c) = ab + ac$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{a/b}{c/d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

$$a^m a^n = a^{m+n} \qquad \frac{a^m}{a^n} = a^{m-n}$$

$$(ab)^n = a^n b^n \qquad (a^m)^n = a^{mn}$$

$$a^{-n} = \frac{1}{a^n} \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \qquad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m = a^{\frac{m}{n}} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Exposants rationnels

1)
$$a^{\frac{2}{3}} = \sqrt[3]{a^2}$$

2)
$$\sqrt{5} \cdot \sqrt{5} = 5^{\frac{1}{2}} \cdot 5^{\frac{1}{2}}$$

= $5^{\frac{1}{2} + \frac{1}{2}}$
= 5^{1}
= 5

Aide-mémoire algèbre et trigo

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m = a^{\frac{m}{n}}$$
 $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Exemples : Écrire autrement avant de dériver

Dérivez les fonctions suivantes. Donnez le résultat avec exposants positifs et dénominateur commun.

(a)
$$f(x) = 4x^3 - 5x^2 + 4x - 80$$

(b)
$$f(x) = x^3 + 5$$

(c)
$$f(x) = \sqrt{x} + x$$

(d)
$$f(x) = x - \sqrt[3]{x^5}$$

(e)
$$f(x) = \frac{2}{x}$$

(f)
$$f(x) = \frac{1}{x^4} - x^4$$

(g)
$$f(x) = \pi x^2$$

(h)
$$f(x) = \frac{2}{x^4}$$

(i)
$$f(x) = \sqrt{3}x^5$$

(j)
$$f(x) = \frac{2+x+8x^3}{x^4}$$

(k)
$$f(x) = \frac{1}{\sqrt[3]{x}} + \sqrt[3]{x}$$

(l)
$$f(x) = x^2(2x^4 - 6x^3)$$

(m)
$$f(x) = \frac{x^4 + x^2 + 5}{x^2}$$

(n)
$$f(x) = x + \pi^2$$

(o)
$$f(x) = \frac{16x^8 + 6x^4 + 1}{2x^4}$$

(p)
$$f(x) = \frac{5x^2 - 2}{x^2}$$

(q)
$$f(x) = 10\sqrt[5]{x^6}$$

(r)
$$f(x) = 6\sqrt[3]{x^2}$$

(s)
$$f(x) = \frac{\sqrt{x} - 3}{\sqrt{x}}$$

(t)
$$f(x) = (x^3 - 1)(x^3 + 1)$$

(u)
$$f(x) = \frac{12x^{10} - 3x^3 + 4}{4x^2}$$

Aide-mémoire algèbre et trigo

Propriétés des exposants et des radicaux

$$a^m a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$(ab)^n = a^n b^n \qquad (a^m)^n = a^{mn}$$

$$a^{-n} = \frac{1}{a^n}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \qquad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m = a^{\frac{m}{n}}$$
 $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Pour répondre à cette question, on doit

- ✓ connaitre l'ordre de priorité des opérations
- ✓ distinguer entre un terme et un facteur
- ✓ utiliser les règles des exposants
- ✓ traduire les radicaux en exposants fractionnaires
- utiliser les propriétés des fractions pour réécrire et simplifier avant de dériver
- ✓ (MAT145) utiliser les règles et les formules de dérivation
- mettre au dénominateur commun

Simplifier une fraction

$$\frac{36}{42} = \frac{6 \cdot 6}{6 \cdot 7} = \frac{\cancel{6}}{\cancel{6}} \cdot \frac{6}{7} = \frac{6}{7}$$

Aide-mémoire algèbre et trigo Opérations arithmétiques

$$a(b+c) = ab + ac$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{a/b}{c/d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

$$\frac{x^2 + 5x}{5x} = \frac{x \cdot x + 5x}{5x} = \frac{x(x+5)}{5x} = \boxed{\cancel{x}} \cdot \frac{(x+5)}{5} = \boxed{\cancel{x}} \cdot \frac{(x+5)}{5}$$

Exemples : Écrire autrement avant de dériver

2.5 Dérivez les fonctions suivantes. Donnez le résultat avec exposants positifs et dénominateur commun.

(a)
$$f(x) = 4x^3 - 5x^2 + 4x - 80$$

(b)
$$f(x) = x^3 + 5$$

(c)
$$f(x) = \sqrt{x} + x$$

(d)
$$f(x) = x - \sqrt[3]{x^5}$$

(e)
$$f(x) = \frac{2}{x}$$

(f)
$$f(x) = \frac{1}{x^4} - x^4$$

(g)
$$f(x) = \pi x^2$$

(h)
$$f(x) = \frac{2}{x^4}$$

(i)
$$f(x) = \sqrt{3}x^5$$

(j)
$$f(x) = \frac{2+x+8x^3}{x^4}$$

(k)
$$f(x) = \frac{1}{\sqrt[3]{x}} + \sqrt[3]{x}$$

(l)
$$f(x) = x^2(2x^4 - 6x^3)$$

(m)
$$f(x) = \frac{x^4 + x^2 + 5}{x^2}$$

(n)
$$f(x) = x + \pi^2$$

(o)
$$f(x) = \frac{16x^8 + 6x^4 + 1}{2x^4}$$

(p)
$$f(x) = \frac{5x^2 - 2}{x^2}$$

(q)
$$f(x) = 10\sqrt[5]{x^6}$$

(r)
$$f(x) = 6\sqrt[3]{x^2}$$

(s)
$$f(x) = \frac{\sqrt{x}-3}{\sqrt{x}}$$

(t)
$$f(x) = (x^3 - 1)(x^3 + 1)$$

(u)
$$f(x) = \frac{12x^{10} - 3x^3 + 4}{4x^2}$$

Aide-mémoire algèbre et trigo

Opérations arithmétiques

$$a(b+c) = ab + ac$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{a/b}{c/d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

$$a^m a^n = a^{m+n} \qquad \qquad \frac{a^m}{a^n} = a^{m-n}$$

$$(ab)^n = a^n b^n \qquad (a^m)^n = a^{mn}$$

$$a^{-n} = \frac{1}{a^n} \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \qquad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m = a^{\frac{m}{n}} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Pour répondre à cette question, on doit

- ✓ connaitre l'ordre de priorité des opérations
- ✓ distinguer entre un terme et un facteur
- ✓ utiliser les règles des exposants
- ✓ traduire les radicaux en exposants fractionnaires
- ✓ utiliser les propriétés des fractions pour réécrire et simplifier avant de dériver
- ✓ (MAT145) utiliser les règles et les formules de dérivation mettre au dénominateur commun